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Abstract. Using Robert Spira’s [4] definitions of complex Mersenne numbers

and the complex sum-of-divisors function, we characterize (ω+2)-norm-perfect
and (ω + 2)-perfect numbers that are divisble by ω + 2 and prove the nonex-

istence of 2-norm-perfect numbers that are divisible by 2 in the Eisenstein
integers.

1. Introduction

Let σ : Z→ N be the function defined by the equation

(1.1) σ(n) =
∑
d|n

d

This function is called the sum-of-divisors function.
In the integers, a k-perfect number is a positive integer n satisfying the equation

(1.2) σ(n) = kn

The most widely studied k-perfect numbers are the 2-perfect numbers which are
most commonly known by the name of perfect numbers. The first seven 2-perfect
numbers are: 6 = 1 + 2 + 3, 28 = 1 + 2 + 4 + 7 + 14, 496, 8128, 212(213 − 1),
216(217 − 1), and 218(219 − 1). As of today, the mathematical community knows
exactly 49 2-perfect numbers in the integers. The largest one has 44677235 digits.

The study of perfect numbers dates as far back as Euclid, who circa 300 B.C,
proved that, for primes p such that 2p − 1 is also prime, the numbers of the form

(1.3) 2p−1(2p − 1)

are 2-perfect. Numbers of the form 2p − 1 are now known as Mersenne numbers.
In particular, if 2p − 1 is prime, it is called a Mersenne prime.

Around two millennia after Euclid’s proof, Euler proved that all even 2-perfect
numbers were of the form (1.3), thereby characterizing all even 2-perfect numbers
in the integers.

Theorem 1.1 (Euclid-Euler Theorem). The positive integer n is an even 2-perfect
number if and only if n = 2p−1(2p − 1) where 2p − 1 is prime.

The purpose of this paper is to characterize all (ω+ 2)-perfect numbers divisible
by ω + 2 and all (ω + 2)-norm-perfect numbers divisible by ω + 2 in the Eisenstein
integers, and to show that there exist no 2-norm-perfect Eisenstein integers divis-
ible by 2. We follow Wayne McDaniel’s [2] and Kieran Smallbone’s [3] approach
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Figure 1. The Eisenstein integers form a triangular lattice over
the complex plane

who provided partial characterizations of (i + 1)-norm-perfect and (i + 1)-perfect
numbers in the Gaussian integers, and 2-perfect numbers in the Eisenstein integers,
respectively.

This paper is structured as follows. In section 2, we provide some technical
background. In section 3, we present our results on (ω + 2)-norm-perfect and
(ω+ 2)-perfect numbers. In section 4, we prove the nonexistence of 2-norm-perfect
that are divisible by 2 in the Eisenstein integers that are divisible by 2. In section 5,
we discuss some of the unanswered questions about τ−perfect numbers in quadratic
integer rings such that the Gaussian and the Eisenstein.

2. Background

Definition 2.1 (Eisenstein integers). The set Z[ω] = {a+ bω | a, b ∈ Z[ω]}, under
the usual operations of addition and multiplication of complex numbers, is the ring

of Eisenstein integers, where ω = e
2πi
3 = −1+

√
−3

2 .

Throughout this paper, it might be helpful for the reader to visualize the Eisen-
stein integers as a subset of the complex plane. See figure 1. Like the complex
plane is partitioned symmetrically into four quadrants, the Eisenstein integers is
symmetrically and radially partitioned into six sextants. Each sextant is defined as
follows.

(1) First sextant: {η ∈ Z[ω] | 0 ≤ Arg(η) < π
3 }

(2) Second sextant: {η ∈ Z[ω] | π3 ≤ Arg(η) < 2π
3 }

(3) Third sextant: {η ∈ Z[ω] | 2π3 ≤ Arg(η) < π}
(4) Fourth sextant: {η ∈ Z[ω] | −π < Arg(η) < − 2π

3 or Arg(η) = π}
(5) Fifth sextant: {η ∈ Z[ω] | − 2π

3 ≤ Arg(η) < −π3 }
(6) Sixth sextant: {η ∈ Z[ω] | −π3 ≤ Arg(η) < 0}

The Eisenstein integers are endowed with a Euclidean function N and which we
will call the norm. It is defined as follows.

Definition 2.2 (Norm function). N : Z[ω] → N ∪ {0} is defined by the equation

N(a+ωb) = |a+ωb|2 = (a+ωb)(a+ ωb) = a2−ab+ b2 = (a− b)2−ab is the norm
function in Z[ω]



τ -NORM-PERFECT AND τ -PERFECT EISENSTEIN INTEGERS FOR τ = ω + 2 AND 2 3

Remark 2.3. Equipped with this norm, the ring of Eisenstein integers is a Euclidean
domain and thus a unique factorization domain.

Proposition 2.4. N is completely multiplicative.

Proof. Let α = a+ ωb and let β = c+ ωd. Then, α · β = ac− bd+ (ad+ bc− bd)ω
and

N(α · β) = (ac− bd)2 − (ac− bd)(ad+ bc− bd) + (ad+ bc− bd)2

= (a2 − ab+ b2)(c2 − cd+ d2) = N(α)N(β)
(2.1)

�

Proposition 2.5. The units of Z[ω] are ±1,±ω, and ± (1 + ω).

Proof. Suppose that η has a multiplicative inverse. Then, N(η)N(η−1) = N(ηη−1) =
N(1) = 1. Write η = a + ωb. Then we have N(η) = (a − b)2 + ab = 1. One can
check that the only solutions to this equation are: (±1, 0), (±1,±1), and (0,±1).

�

Corollary 2.6. ε is a unit if and only if N(ε) = 1.

For the remainder of this paper, elements of Z will be referred to by the name
of rational integers or rational numbers and by English letters. Eisenstein integers,
on the other hand, will be referred to by the name of integers or numbers and by
Greek letters.

Definition 2.7 (Prime). A nonunit η ∈ R is prime if, whenever η|αβ for α, β ∈ R,
η|α or η|β.

For an illustration of the primes of smallest norm in the Eisenstein integers, see
figure 2. The following proposition due to David Cox [1] characterizes the rational
primes p that are also prime in the Eisenstein integers.

Remark 2.8. Remark the symmetry in figure 2. This is because if π is prime, π
and επ are prime for each unit ε.

Proposition 2.9. Let p be a prime in Z. Then:

(1) If p = 3, then 1− ω is prime in Z[ω] and 3 = −ω2(1− ω)2.
(2) If p ≡ 2 (mod 3), then there is a prime π ∈ Z[ω] such that ππ, and the

primes π and π are nonassociates in Z.
(3) If p ≡ 2 (mod 3), then p remains prime in Z[ω].

Proposition 2.10. If N(η) is a rational prime, then η is prime.

Proof. Suppose that η is not prime. Write η = αβ for some nonunits α and β.
N(η) = N(αβ) = N(α)N(β). Since α, β are nonunits, N(α), N(β) ≥ 2 and thus
N(η) is rational composite. �

Definition 2.11 (Associate). For nonzero η ∈ R, εη is an associate of η for each
unit ε.

Remark 2.12. Every nonzero η has exactly one associate in each sextant of Z[ω].

For primes π ∈ Z[ω], we denote π∗ as the first-sextant associate of π. In general,
for η ∈ Z[ω], we define η∗ as follows.
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Figure 2. The rays connected at the origin delimit each sextant
and the black points represent Eisenstein primes.

Definition 2.13. Write η =
∏s
i=1 π

ei
i for primes π. Then, η∗ =

∏s
i=1(π∗i )ei .

Consider, for instance, η = (1− ω)2(ω + 3)7. Then, η∗ = (ω + 2)2(ω + 3)7.

Definition 2.14 (Complex sum-of-divisors function). The sum-of-divisors function
σ : Z[ω]→ Z[ω] is defined by the equation

(2.2) σ(η) =
∑
δ∗|η

δ∗

One of the most important properties of σ is that it is multiplicative.

Remark 2.15. If n ∈ Z, then σ(n) is the rational integers sum-of-divisors.

Proposition 2.16. The sum-of-divisors function is multiplicative.

Proof. Let (η1, η2) = 1. We can uniquely write δ∗ = δ∗1δ
∗
2 where δ∗1 |η1 and δ∗2 |η2.

Thus,

(2.3) σ(η1η2) =
∑

δ∗|η1η2

δ∗ =
∑

δ∗1 |η1,δ∗2 |η2

δ∗1δ
∗
2 =

( ∑
δ∗1 |η1

δ∗1

)( ∑
δ∗2 |η2

δ∗2

)
= σ(η1)σ(η2)

�

Definition 2.17 (τ -Mersenne numbers). For τ prime, the number

(2.4) Mk = σ(τk−1) =
τk − 1

τ − 1

is a τ -Mersenne number. In particular, if Mk is prime, it is called a τ -Mersenne
prime. For notational simplicity, we denote Ak = N(Mk).
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Remark 2.18. In particular, notice that if τ = 2, then Mp = 2p−1 as in the integer
case.

Definition 2.19. Let η ∈ Z[ω]. η is τ -perfect if σ(η) = τη. η is τ -norm-perfect if
N(σ(η)) = N(τη).

Remark 2.20. Every τ -perfect number is norm-perfect.

The following are some examples of τ -norm-perfect and τ -perfect Eisenstein
integers for τ = ω + 3. The number τp−1Mp is τ -perfect for p equals to 193, 709,
2029, 9049, 10453, or 255361, Clearly, for each unit ε, we also have that ετp−1Mp

is τ -norm-perfect. Similarly, the number ετp−1Mp is τ -norm-perfect for p equals to
11, 239, 659, 1103, and 534827.

3. (ω + 2)-Perfect and (ω + 2)-Norm-Perfect Eisenstein Integers

In this section, we fix τ = ω + 2.
Making use of the periodicity of cosine and sine, the table 1 is computed.

Table 1. Mk and Ak

k (mod 12) Mk Ak

0 1
2 (−1 + 3

k
2 ) + 1

2 i(
√

3− 3
1
2+

k
2 ) 1− 2 · 3k/2 + 3k

1 1
2 (−1 + 3

1
2+

k
2 ) + 1

2 i(
√

3− 3
k
2 ) 1 + 3k − 3

1+k
2

2 1
2 (−1 + 2 · 3 k2 ) + i

√
3

2 1− 3k/2 + 3k

3 1
2 (−1 + 3

1
2+

k
2 ) + 1

2 i(
√

3 + 3
k
2 ) 1 + 3k

4 1
2 (−1 + 3

k
2 ) + 1

2 i(
√

3 + 3
1
2+

k
2 ) 1 + 3k/2 + 3k

5 − 1
2 + 1

2 i(
√

3 + 2 · 3 k2 ) 1 + 3k + 3
1+k
2

6 1
2 (−1− 3

k
2 ) + 1

2 i(
√

3 + 3
1
2+

k
2 ) 1 + 2 · 3k/2 + 3k

7 1
2 (−1− 3

1
2+

k
2 ) + 1

2 i(
√

3 + 3
k
2 ) 1 + 3k + 3

1+k
2

8 1
2 (−1− 2 · 3 k2 ) + i

√
3

2 1 + 3k/2 + 3k

9 1
2 (−1− 3

1
2+

k
2 ) + 1

2 i(
√

3− 3
k
2 ) 1 + 3k

10 1
2 (−1− 3

k
2 ) + 1

2 i(
√

3− 3
1
2+

k
2 ) 1− 3k/2 + 3k

11 − 1
2 + 1

2 i(
√

3− 2 · 3 k2 ) 1 + 3k − 3
1+k
2

Lemma 3.1 (Analogue of Euclid’s Lemma). Let Mp be a Mersenne prime and ε a
unit. If p ≡ 1 (mod 12), then η = ετp−1Mp is a τ -norm-perfect number. If p ≡ −1

(mod 12), then η = ετp−1Mp is a τ -norm-perfect number.

Proof. For p ≡ 1 (mod 12), Mp is a sixth-sextant prime. Thus, M∗p = Mp(1+ω) =

τp − 1. If η = ετp−1Mp, it follows that

(3.1) N(σ(η)) = N(σ(ε)σ(τp−1)σ(Mp)) = N(Mp(1 +M∗p )) = N(τpMp) = N(τη)
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For p ≡ −1 (mod 12), Mp is a second-sextant prime. Thus, Mp
∗

= −Mpω =

τp − 1. If η = ετp−1Mp, it follows that

(3.2) N(σ(η)) = N(σ(ε)σ(τp−1)σ(Mp)) = N(Mp(1 +Mp
∗
)) = N(τpMp) = N(τη)

In both cases, η is τ -norm-perfect.
�

Throughout the following arguments, we will make constant use of the following
inequality due to McDaniel [2] and improved upon by Smallbone [3].

Lemma 3.2. Let z = x+ iy and let k ∈ N.
If x ≥ 5

4 , then

(3.3) N(1 + z + ...+ zk) > N(zk−1)(N(z) + 2x− 1)

Moreover, if |y| ≤ x− 1, then

(3.4) N(1 + ...+ zk) ≥ N(zk−1)(N(z) + 2x+ 1)

with equality if and only if k = 1.

Proof. If k = 1,

(3.5) N(1 + z) = N(z) + 2x+ 1

If k = 2,

N(1 + z + z2) = N(z)N(z−1 + 1 + z)

= N(z)
(
N(z) + 2x+ 1 +

2x+ 1 + 2(x2 − y2)

N(z)

)
>

{
N(z)(N(z) + 2x− 1) for all y

N(z)(N(z) + 2x+ 1) for all y such that |y| ≤ x

(3.6)

Let z = x+ iy = reiθ. If k ≥ 3,

N(1 + z + ...+ zk) = N
(zk+1 − 1

z − 1

)
=

(zk+1 − 1)(zk+1 − 1)

(z − 1)(z − 1)

=
N(zk+1) + 1− (zk+1 + zk+1)

r2 − x+ 1

=
N(zk−1)(r4 + r−2(k+1) − 2r3−k cos (k + 1)θ

r2 − 2x+ 1

>
N(zk−1)(r4 − 2)

r2 − 2x+ 1

(3.7)

Since x ≥ 5
4 ,

(3.8) (r2 + 2x− 1)(r2 − 2x+ 1) = r4 − (2x− 1)2 < r4 − 2

Hence, N(1 + ...+ zk) > N(zk−1)(N(z) + 2x− 1). If also |y| ≤ x− 1, then



τ -NORM-PERFECT AND τ -PERFECT EISENSTEIN INTEGERS FOR τ = ω + 2 AND 2 7

(r2 + 2x+ 1)(r2 − 2x+ 1) = (r2 + 1)2 − 4x2 = r4 − 2(x2 − y2) + 1

≤ r4 − (4x− 3) ≤ r4 − 2
(3.9)

Hence N(1 + z + ...+ zk) > N(zk−1)(N(z) + 2x+ 1). �

Many times, we will also make use of the following corollaries to lemma 3.2.

Corollary 3.3. Let π be prime, k ∈ N, and write π∗ = x+ iy. Then,

(3.10)
N(σ(πk))

N(πk)
>
N(π) + 2x− 1

N(π)

Moreover, if y ≤ x− 1, then

(3.11)
N(σ(πk))

N(πk)
≥ N(π) + 2x+ 1

N(π)

with equality if and only if k = 1

Corollary 3.4. For any η ∈ Z[ω],

(3.12)
N(σ(η))

N(η)
≥ 1

with equality if and only if η is a unit.

With these inequalities in our toolbox, we proceed lemma by lemma to prove an
analogue of Euler’s Lemma.

Lemma 3.5. For k ≡ 3, 4, 5, 6, 7, 8, 9 (mod 12) and µ not divisibly by τ , η = τk−1µ
is not τ -norm-perfect.

Proof. Consulting table 1, it follows that, for k ≡ 3, 4, 5, 6, 7, 8, 9 (mod 12), Ak >
3k = N(τk). Thus, by inequality (3.12), it follows that

(3.13) N(σ(η)) = AkN(σ(µ)) > N(τk)N(µ) = N(τη)

Hence, η is not τ -norm-perfect.
�

We summarize the results of lemma 3.5 in the following corollary.

Corollary 3.6. If η = τk−1µ is τ -norm-perfect, then k ≡ 0,±1,±2 (mod 12).

Lemma 3.7. Let k ≥ 2 and µ not divisible by τ . If η = τk−1µ is τ -norm-perfect,
then Mk or Mk divide η and are both prime.

Proof. Let π be a first-sextant prime divisor of Mk. Suppose that η is τ -norm-
perfect. Then, it follows that

3nη = N(τη) = N(σ(η)) = N(Mkσ(µ)) = ππN
(Mk

π
σ(µ)

)
(3.14)

Thus, it follows that π|3nη. Since 3 = (1 + w)(1 − w)2, since 1 + w is a unit,
since 1 − ω is an associate of τ and since (Mk, τ) = 1, it follows that π - 3. Thus,
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π|nη. Since π is prime, then it follows that π|η or π|η. Equivalently, π|η or π|η. In
particular, since (Mk, τ) = 1, it follows that π|µ or π|µ.

For any prime π such that π|µ, let a be the largest rational integer such that
πa|µ. Using corollaries to lemma 3.2, it follows that

1 =
N(σ(η))

N(τη)
=
N(σ(τk−1)σ(πa))

N(τkπa)

N(σ(µ/πa))

N(µ/πa)
≥ N(σ(τk−1)σ(πa))

N(τkπa)

>
Ak(N(π) + 2x− 1)

N(τk)N(π)

(3.15)

Rearranging gives us

(3.16) N(π) >
Ak(2x− 1)

N(τk)−Ak
Since π∗ and π∗ are first-sextant primes different from τ , Reπ∗,Reπ∗ ≥ 2. So

(3.17) N(π) >
3Ak

N(τk)−Ak
By corollary 3.6, it follows that

(3.18)
3A

1
2

k

N(τk)−Ak
≥

3
(

3
k
2 − 1

)
2 · 3 k2 − 1

> 1

Thus,

(3.19) N(π) >
3Ak

N(τk)−Ak
> A

1
2

k = N(Mk)
1
2

That is,

(3.20) N(π)2 > N(Mk)

Assume that Mk is not prime. Write Mk = επ0π1...πr for r ∈ N, where πi is a
prime, and ε is a unit. Let π0 be a prime with the least norm among the norm of
the primes πi. Then, it follows that

(3.21) N(π0) > N(π1)...N(πr)

which is a contradiction. Thus, it follows that Mk = επ for some prime π and unit
ε.

Suppose that Mk is not prime. Write Mk = αβ. Then, Mk = αβ, making Mk

not prime. Therefore, by the above argument, Mk and Mk are both prime.
�

Lemma 3.8. If Mk is prime, then k is rational prime.

Proof. Suppose that k is composite. Write k = nm for n,m ≥ 2. Then,



τ -NORM-PERFECT AND τ -PERFECT EISENSTEIN INTEGERS FOR τ = ω + 2 AND 2 9

(3.22) Mk =
τk − 1

τ − 1
=
τnm − 1

τ − 1
=

(
τn − 1

τ − 1

)(
τnm − 1

τn − 1

)
If τnm−1

τn−1 = ε for some unit ε, then by rearranging and taking norms, it follows
that

(3.23) 3nN(1− ετmn−n) = N(1− ε)

but 3nN(1− ετmn−n) ≥ 9 and N(1− ε) ≤ 4. By the same argument, τn−1
τ−1 is not

a unit.
�

Lemma 3.9. Let t ∈ N, δ not divisibly τ , and k ≥ 2. If η = τk−1µ is a τ -
norm-perfect number, then, for some unit ε, either η = ετp−1M t

pδ where Mp is a

Mersenne prime with p ≡ 1 (mod 12), or η = ετp−1Mp
t
δ where Mp is a Mersenne

prime with p ≡ −1 (mod 12)

Proof. By lemma 3.7, η = τk−1M t
kδ or η = τk−1Mk

t
δ for some δ not divisible by τ .

By choosing t sufficiently large, we get that (Mk, δ) = 1 or (Mk, δ) = 1, respectively.
By proposition 3.8, k must be a rational prime. Hence, we write p. By corollary
3.6, p = 2 or p ≡ ±1 (mod 12).

We are left to show that for p = 2 and Mp prime, η = ετp−1M t
pδ and η =

ετp−1Mp
t
δ are not τ -norm-perfect; that, for p ≡ −1 (mod 12) and Mp prime,

η = ετp−1M t
pδ is not τ -norm-perfect; and that, for p ≡ 1 (mod 12) and Mp prime,

η = ετp−1Mp
t
δ is not τ -norm-perfect.

Consider η = τM t
2δ. M2 = σ(τ) = 1 + τ = 3 + ω. M∗2 = M2. So, by lemma 3.2

and its corollary, it follows that

N(σ(η))

N(τη)
=
N(σ(τ))

N(τ)2
N(σ(M t

2))

N(M t
2)

N(σ(δ))

N(δ)
≥ N(σ(τ))

N(τ)2
N(σ(M t

2))

N(M t
2)

>
N(1 + τ)

N(τ)2
A2 + 2 ReM∗2 − 1

A2
=

11

9
> 1

(3.24)

Consider η = τM2
t
δ. M2 = σ(τ) = 1 + τ = 3 + ω = 2− ω. M2

∗
= M2(ω + 1) =

3 + 2ω. As before, it follows that

N(σ(η))

N(τη)
>
N(1 + τ)

N(τ)2
A2 + 2 ReM2

∗ − 1

A2
=

10

9
> 1(3.25)

Consider η = ετp−1M t
pδ for p ≡ −1 (mod 12). Since Mp is a fifth-sextant prime,

M∗p = ωMp. Since ImM∗p ≤ ReM∗p − 1, it follows that

N(σ(η))

N(τη)
≥
Ap + 2 ReM∗p + 1

N(τp)
= 3p − 1 > 1(3.26)

Consider η = ετp−1Mp
t
δ for p ≡ 1 (mod 12). Since Mp is a sixth-sextant prime,

Mp
∗

= Mp. Since ImMp
∗ ≤ ReMp

∗ − 1, it follows that
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N(σ(η))

N(τη)
≥ Ap + 2 ReMp

∗
+ 1

N(τp)
= 3p − 1 > 1(3.27)

�

We now present the analogue of Euler’s lemma.

Lemma 3.10 (Analogue of Euler’s Lemma). Let k ≥ 2. If η = τk−1η is a τ -norm-
perfect number, then, for some unit ε, either η = ετp−1Mp where Mp is a Mersenne

prime with p ≡ 1 (mod 12), or η = ετp−1Mp where Mp is a Mersenne prime with
p ≡ −1 (mod 12).

Proof. Let Mp prime and p ≡ 1 (mod 12). Since | ImM∗p | ≤ ReM∗p−1, by corollary
3.3,

(3.28)
N(σ(M t

p))

N(M t
p)
≥ N(σ(Mp))

N(Mp)

with equality if and only if t = 1.
By the same argument we also have that

(3.29)
N(σ(M t

p))

N(M t
p)
≥ N(σ(Mp))

N(Mp)

with equality if and only if t = 1.
Suppose that η is τ -norm-perfect number, then, by lemma 3.9, η = ετp−1M t

pδ

or η = ετp−1Mp
t
δ.

Assume that η is of the former form. Then, by the Analogue of Euclid’s Lemma,
by corollary 3.3, by inequality 3.28, and since η is τ -norm-perfect, it follows that

1 =
N(σ(η))

N(τη)
=
N(σ(τp−1))

N(τp)

N(σ(M t
p))

N(M t
p)

N(σ(δ))

N(δ)

≥ N(σ(τp−1))

N(τp)

N(σ(Mp))

N(Mp)

N(σ(δ))

N(δ)

=
N(σ(τp−1Mp))

N(τpMp)

N(σ(δ))

N(δ)
=
N(σ(δ))

N(δ)

(3.30)

Thus, N(σ(δ))
N(δ) = 1; that is, δ is a unit. Further, if δ is a unit, it follows that

N(σ(Mt
p))

N(Mt
p)

=
N(σ(Mp))
N(Mp)

; that is, that t = 1. By the same argument, it follows that δ

is a unit and t = 1 in the latter form of η.
�

We consolidate the analogues of Euclid’s and Euler’s lemmas into what we have
called the Euclid-Euler Theorem for τ -norm-perfect Eisenstein Integers.

Theorem 3.11 (Euclid-Euler Theorem for τ -Norm-Perfect Eisenstein Integers).
Let Mp be a Mersenne prime and ε a unit. If p ≡ 1 (mod 12), η = ετp−1Mp is

a τ -norm-perfect number; if p ≡ −1 (mod 12), η = ετp−1Mp is a τ -norm-perfect
number. Conversely, if η is a τ -norm-perfect number divisible by τ , then, for some
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unit ε, either η = ετp−1Mp, where Mp is a Mersenne prime with p ≡ 1 (mod 12),

or η = ετp−1Mp, where Mp is a Mersenne prime with p ≡ −1 (mod 12).

Corollary 3.12. There are no imprimitive τ -Norm-Perfect numbers divisible by τ
in the Eisenstein integers.

We now derive what we have called the Euclid-Euler Theorem for τ -Perfect
Eisenstein Integers.

Corollary 3.13 (Euclid-Euler Theorem for τ -Perfect Eisenstein Integers). Let Mp

be a Mersenne prime. Then, η is an τ -perfect number divisible by τ if and only if
η = τp−1Mp for p ≡ 1 (mod 12).

Proof. Consider η = ετp−1Mp for p ≡ 1 (mod 12). Since Mp is a sixth-sextant
prime, M∗p = Mp(1 + ω) = τp − 1. Thus, it follows that

(3.31) σ(η) = σ(τp−1Mp) = σ(τp−1)σ(Mp) = Mp(1 +M∗p ) = τpMp = τη

By theorem 3.11, if η is an τ -perfect number divisible by τ , then η = ετp−1Mp

for p ≡ 1 (mod 12), Mp prime, and some unit ε; or η = ετp−1Mp for p ≡ −1
(mod 12), Mp prime, and some unit ε.

Consider the latter. Since, for p ≡ −1 (mod 12), Mp is a fifth-sextant prime,

Mp
∗

= −ωMp = τp − 1. Thus, it follows that

(3.32) σ(η) = Mp(1 +M∗p ) = τpMp

Since τp 6= τp, η is not τ -perfect. Therefore, if η is τ -perfect, then η = ετp−1Mp

for p ≡ 1 (mod 12), Mp prime, and some unit ε. It is easy to check that η is only
τ -perfect for ε = 1.

�

4. Nonexistence of 2-norm-perfect Eisenstein Integers

Lemma 4.1. Let k ≥ 2. If η = 2k−1µ is 2-norm-perfect, then σ(2k−1) is prime.

Proof. Let π be a first-sextant prime factor of σ(2k−1) with Reπ ≥ 2. Let a be the
largest rational integer such that πa|σ(2k−1).

(4.1) 22ηη = N(2η) = N(σ(2k−1)σ(µ)) = ππN
(σ(2k−1)

π
σ(µ)

)
Thus it follows that π|22ηη. Since (π, 2) = 1, it follows that π|ηη. Since π is

prime. π|η or π|η. As shown in the proof of lemma 3.7,

(4.2) N(π) >
3(2k − 1)2

22k − (2k − 1)2
=

3(2k − 1)2

2k+1 − 1

Since

(4.3)
3(2k − 1)

2k+1 − 1
> 1

it follows that
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(4.4) N(π) > σ(pk−1)

If σ(pk−1) is composite and write σ(pk−1) = π0π1...πr where π0 is a prime with
the least norm among the norm of all prime factors of σ(pk−1), then

(4.5) N(π0) > N(π1)...N(πr)

This is a contradiction. Thus, σ(pk−1) is prime. �

Theorem 4.2. There are no 2-norm-perfect Eisenstein integers divisible by 2.

Proof. By proposition 2.9, σ(2k−1) is not prime since σ(2k−1) = 1+2+ ...+2k−1 =
2k − 1 6≡ 2 (mod 3). �

5. Discussion

In regard to future work, we are interested in studying τ -norm-perfect and τ -
perfect numbers for other values of τ , and in studying τ -norm-perfect and τ -perfect
numbers that are not divisible by τ for τ = 2 and τ = ω + 2. Thus far, in
the Gaussian and in the Eisenstein integers, there are only characterizations for
τ -norm-perfect and τ -perfect numbers that are also divisible by τ .

In the Eisenstein integers, two potentially promising start points are to attempt
to characterize or prove nonexistence of τ -norm-perfect integers for τ = ω+3 or 2ω+
3 as these are the first-sextant primes that follow ω+2 and 2 in norm. Alternaively,
rational primes p ≡ 2 (mod 3) may be studied. We also would like to remark
that many of our computations become infeasible after certain modifitication. In
particular, computing σ(ηk) for nonprime η and general k ∈ N usually turns to be
a cumbersome task.
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