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1. Abstract

Our results focus on the rainbow numbers of the various graphs with respect to M2 and

M3. We find the rainbow numbers for all graphs with respect to M2. From then on out, the

number of troublesome cases increases for rainbow numbers with respect to M3. We prove

that the rainbow numbers of trees with a diameter of 6 or greater have rb(T,M3) = ∆ + 2.

We extend this result to all graphs with diameter 6 or greater. Our results suggest that

rb(G,M3) = ∆ + 2 for unconnected graphs G; this is an area for further study.

2. Introduction

In general, Anti-Ramsey Theory considers two given graphs, G and H, and determines

the maximum number of colors that can be used to color the edges of G such that every

subgraph of type H has at least 2 edges of the same color. This kind of problem is contrasted

with Ramsey Theory problems in which the number of colors used is fixed, and the graphs

are variable. Anti-Ramsey Theory problems have been explored with many different graph

types [1]. Typically the super graph is a complete graph, however, this is not always the

case.

Some work has been done to find the rainbow numbers of regular bipartite graphs, cycles,

and paths with respect to matchings. In particular, Li and Xu found that rb(Bk,Mm) =

k(m−2)+2 where Bk is a k-regular bipartite graph, and Mm is an m-matching [2]. The goal

in this paper is to extend these results to graphs in general with respect to small matching

sizes.

We will begin our paper by giving the definitions and corresponding notation. For the

remainder of this paper we will assume that all graphs G are simple and undirected. We will

let V (G) denote the vertex set of G and E(G) denote the edge set of G. As per convention,

∆ is the maximum degree of G. We let [r] = {1, . . . , r}. Furthermore, Pk denotes a path on

k vertices with length k − 1, unless otherwise noted.
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Definition 2.1. We say that diameter of G, denoted by diam(G), is the length of the longest

shortest path in between any two vertices in G. If G is disconnected, we have diam(G) =∞.

Note that connectivity is implicitly included in the definition of diameter. That is, if a

graph has a finite number as a diameter, then it must be connected.

Definition 2.2. Let G be a graph. Let [r] = {1, . . . , r}. Then c : E(G) → [r] is an exact

r-coloring of the edges of G if and only if for every r′ ∈ [r], there exists e ∈ E(G) such that

c(e) = r′.

Definition 2.3. Let G be a graph. Let c : E(G) → [r] be an exact r-coloring of the edges

of G. We say G is rainbow under c if and only if for all e, f ∈ E(G) where e 6= f , we have

c(e) 6= c(f).

Definition 2.4. Let G and H be graphs. Then the rainbow number of G with respect to H

is the smallest positive integer r such that if G is exactly colored with r colors, then there

exists a rainbow subgraph H. This is denoted by rb(G,H).

The definition of rainbow is also defined negatively as r where r− 1 is the largest positive

integer such that there exists an exact r − 1-coloring of G such that there does not exist

a rainbow subgraph H. This part of the definition of rb(G,H) is particularly useful when

there is no subgraph H ⊆ G. In these cases rb(G,H) = |E(G)|+ 1.

Definition 2.5. We say that a graph, Mk, is a k-matching if and only if |E(Mk)| = k, and

for any e, e′ ∈ E(Mk), we have e ∩ e′ = {}.

Definition 2.6. Let G be a graph. We say that D ⊆ V (G) is a vertex cover of G, if and

only if for all e ∈ E(G) there exists v ∈ D such that v ∈ e.

Vertex covers are useful in proofs of rainbow numbers because if D is a vertex cover of G,

then any k-matching in G must include at least k vertices in D.

To prove rainbow numbers of graphs, we need to give both an upper bound and a lower

bound for the rainbow number. Since most of our results show that rb(G,M) = ∆ + 2, we
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offer Proposition 2.1 as a general lower bound for rainbow numbers. In most cases, we will

assume that this is the lower bound for the result we are trying to prove. However, if it

is unclear whether our proof is adequately exhaustive of possible rainbow numbers, we will

explicitly reference this proposition.

Proposition 2.1. Let H be a graph with maximum degree ∆ such that there exists a M3

subgraph. Then rb(H,M3) ≥ ∆ + 2.

Proof. Let H be a graph with maximum degree ∆ such that there exists a M3 subgraph. We

claim that the following construction yields an exact ∆ + 1-coloring such that there does not

exist a rainbow M3 subgraph of H. Let v ∈ V (H) be a vertex such that deg(v) = ∆. Let

c : E(H) → [∆ + 1] be an exact coloring such that if v /∈ e for e ∈ E(H), then c(e) = 1 for

all e ∈ E(H). This implies that the remaining ∆ edges incident upon v have unique colors.

Any M3 must contain at least 2 edges that are not incident upon v under c. Therefore, any

M3 subgraph of H is not rainbow under c. Thus, rb(H,M3) ≥ ∆ + 2. �

As with Proposition 2.1, it is sometimes useful to have a general upper bound for rainbow

numbers. Fortunately, the definition of rb(G,M) gives us an intuitive upper bound.

Proposition 2.2. Let G be a graph such that there exists a Mk subgraph of G. Then

rb(G,M3) ≤ m, where m is the number of edges in G.

Proof. Let G be a graph such that there exists a Mk subgraph of G. Let c color the edges

of G such that every edge has a unique color. Then there must be a rainbow Mk. �
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3. Rainbow Numbers with Respect to 2-Matchings

By definition, if a graph G does not contain a subgraph H, then rb(G,H) = |E(G)| + 1.

Since we know what the rainbow number rb(G,M2) is for the class of graphs not containing

M2 as a subgraph (stars, for example), we may assume from here on that G contains a

2-matching.

Theorem 3.1. If Pn is a path with n > 4, then rb(Pn,M2) = 2.

Proof. By induction on the number of vertices in the path.

Base Case: Consider a path of length 4, P5 = (v1, v2, v3, v4, v5) with edges ei = {vi, vi+1}

for i ∈ [4] and an exact 2-coloring c : E(P5) → [2]. Assume for the sake of contradiction

that P5 does not contain a rainbow 2-matching under any exact 2-coloring. Then it doesn’t

contain a rainbow 2-matching under c. Notice that the following pairs of edges are 2-

matchings: {e1, e3}, {e2, e4}, {e1, e4}. Therefore each of these pairs must be monochromatic:

c(e1) = c(e3) and c(e2) = c(e4) and c(e1) = c(e4). Therefore c(e1) = c(e2) = c(e3) = c(e4),

which contradicts the assumption that c was an exact 2-coloring. So P5 must have a rainbow

M2, and therefore rb(P5,M2) = 2.

Induction Hypothesis: Let Pn be a path such that 5 ≤ n ≤ N where N ∈ N. Then

rb(Pn,M2) = 2.

Induction Step: Consider some path Pn+1 = (v1, v2, . . . vn, vn+1) with 5 ≤ n ≤ N and

an exact 2-coloring c : E(Pn+1) → [2]. The path P ′ = Pn+1 \ {vn, vn+1} is a path on n

vertices, specifically the first n vertices of Pn+1, v1, v2, . . . , vn. The subpath P ′ is either

monochromatic, or it is not. If it is not, then there is an exact 2-coloring c′ : E(P ′) → [2],

and by the induction hypothesis there exists a rainbow M2 within P ′ which would imply there

is also a rainbow M2 in our host path Pn+1. Otherwise, the subpath P ′ is monochromatic

(WLOG with color 1), in which case the edge {vn, vn+1} must have color 2, since we assumed

c to be an exact 2-coloring. Since this edge is adjacent only to the edge {vn−1, vn}, it forms

a rainbow M2 with any of the other edges. Therefore rb(Pn+1,M2) = 2. �
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Theorem 3.2. If G is a disconnected graph with a 2-matching then rb(G,M2) = 2.

Proof. Let G be a disconnected graph with a 2-matching and c : E(G) → [2] be an exact

2-coloring on G. Assume for the sake of contradiction that there is no rainbow M2 in G

under any 2-coloring. Consider two edges e, f ∈ E(G) such that e and f are not in the same

component of G. That is, that there is no path between e and f . Certainly e and f are a

2-matching. Therefore c(e) must equal c(f), since we assumed none of G’s 2-matchings are

rainbow. Without loss of generality, say the c(e) = c(f) = 1. Since c is an exact 2-coloring,

there must be some other edge g ∈ E(G) such that c(g) = 2. We assumed there is no

rainbow 2-matching in G, so g must be incident upon both e and f . This contradicts the

assumption that e and f are from separate components. Therefore there must be a rainbow

M2 in G, and rb(G,M2) = 2. �

We have shown that rb(G,M2) = 2 when G is a disconnected graph. Therefore, from here

on, we may assume the G is connected.

Theorem 3.3. If G is the complete graph on four vertices, rb(G,M2) = 4.

Proof.

Lower Bound: rb(K4,M2) > 3

There are three 2-matchings in this graph:

{{v1, v3}, {v2, v4}}, {{v1, v2}, {v3, v4}}, {{v1, v4}, {v2, v3}}.

Each gets a unique color. Notice that this 3-coloring of K4

does not have a rainbow 2-matching. Therefore rb(K4,M2)

must be greater than three.

Upper Bound: rb(K4,M2) ≤ 4

Let G be the complete graph on four vertices and c : E(G)→ [4] be an exact 4-coloring on

G. Every edge in E(G) is in exactly one of three 2-matchings. Since there are four colors

and three 2-matchings, by the Pigeon Hole Principle one of the 2-matchings must use two

colors, and therefore be rainbow. �
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Graph G rb(G,M2) Graph G rb(G,M2)

1 3

2 3

3 4

4 4

4

Figure 1. Rainbow numbers for connected graphs on four vertices or fewer

We have shown what the rainbow number is for all graphs on less than or equal to four

vertices with respect to a 2-matching. Therefore from here on, we may assume that the

graph G has more than four vertices.

Lemma 3.1. Let G be a connected graph on at least 5 vertices that contains a 2-matching.

Then rb(G,M2) = 2 if and only if no set of vertices {u, v} is both an edge and a vertex cover.

Proof. Assume that G is a connected graph on at least 5 vertices that contains a 2-matching,

such that no set of vertices {u, v} is both an edge and a vertex cover. G must contain a path

of length at least 4:

If the maximum path length is 1, G only has one edge which contradicts the assumption

that no set of vertices {u, v} is both an edge and a vertex cover. If the maximum path

length is 2, G is a star, which again contradicts the assumption that no set of vertices {u, v}

is both an edge and a vertex cover. If the maximum path length is 3, consider a maximum

path Pmax = (v1, v2, v3, v4). Any other edges in the graph must be adjacent to v2 or v3, since
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we assumed the graph to be connected and Pmax to be of maximum length (the existence

of an edge not in Pmax adjacent to v1 or v4 would mean there is a longer path in G). This

contradicts the assumption that no set of vertices {u, v} is both an edge and a vertex cover

because {v2, v3} is both an edge in G and a vertex cover of G. Therefore G must contain a

path of length at least 4.

Consider this path, P . Let c : E(G)→ [2] be an exact 2-coloring of the edges of G. Under

c, the path P is either 2-colored, in which case there is a rainbow M2 by Lemma 3.1, or it

is monochromatic. If the path is monochromatic, there must be an edge of the other color

somewhere in the graph (else we would not have an exact two-coloring). We case on where

this edge, {u, v}, could be:

We know that the other-colored edge, {u, v}, cannot be incident with either of the path’s

endpoints, since we assumed P to be maximum.

Furthermore, if there is any edge in the P that is not adjacent to {u, v}, then we have

a rainbow M2, and we are done. So we may assume that {u, v} is adjacent to all edges in

the path P . In a simple graph, an edge can be adjacent to at most 4 edges on a path. So if

P has at least 5 edges, we must have a rainbow M2. Therefore we may assume that P has

exactly four edges, and may describe P as the path (v1, v2, v3, v4, v5), where the {u, v} is the

edge {v2, v4}. ⇒⇐

This would mean that {v2, v3} is a vertex cover, which contradicts the assumption that there

is no set of vertices that is both an edge and a vertex cover. Therefore rb(G,M2) = 2. �

Lemma 3.2. Let G be a connected graph with n ≥ 5. Let ` be the number of sets D = {u, v}

such that D is a vertex cover of G and {u, v} ∈ E(G). Then ` ≤ 2, or G is a star.

Proof. Let G be a connected graph with n ≥ 5 vertices. Assume that ` ≥ 3. This implies

that there exists D1, D2, and D3 such that they are all vertex covers of G. This implies that

D1 ∩D2 ∩D3 6= {}. There are two cases; either D1, D2, and D3 are given by a 3-cycle in G,

or D1, D2, and D3 are given by a star in G.
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Case 1: Assume that D1, D2, and D3 are given by a 3-cycle in G. Let this 3-cycle be

given by C = (v1, v2, v3). Since n ≥ 5, there must exist a vertex v /∈ V (C) such that v is

adjacent to some vertex in V (C). Without loss of generality, assume that {v, v1} ∈ V (G). In

this case, the vertex cover given by {v2, v3} does not cover {v, v1} which is a contradiction.

Therefore, it cannot be the case that D1, D2, and D3 are given by a 3-cycle in G.

Case 2: Assume that D1, D2, and D3 is given by a star S ⊂ G; let S is a star the

centered on a vertex v such that Di = {v, vi} for vertices v1, v2, v3. Since n ≥ 5 and G is

a connected graph, there must exist at least 2 other edges in G. There are two subcases;

either all e ∈ E(G) are incident up on v or there exist at least one e ∈ E(G) such that it is

not incident upon v.

Case 2.1: Assume that all e ∈ E(G) are incident upon v. Then G is a star.

Case 2.2 Assume that there exists an edge e ∈ E(G) such that e is not incident upon

v. Now, e is incident on at most 2 leaves of S. Without loss of generality assume that e is

incident upon at most two of the vertices v1, v2, but not v3. This implies that D3 is not a

vertex cover of G. Since this is a contradiction, it cannot be the case that that there exists

an edge e ∈ E(G) such that e is not incident upon v.

Thus, ` ≤ 2, where ` is the number of sets D = {u, v} such that D is a vertex cover of G

and {u, v} ∈ E(G), of G is a star. �

Theorem 3.4. Let G be a graph on at least five vertices that contains a 2-matching. If G

has ` ∈ {0, 1, 2} sets of vertices such that each is both a vertex cover and an edge in E(G),

then rb(G,M2) = 2 + `.

Proof. Let G be a connected graph on at least five vertices that contains a 2-matching.

First, notice that by Lemma 3.1, we have the statement for ` = 0. That is, if G contains

no set of vertices that is both an edge and a vertex cover, then rb(G,M2) = 2 = 2 + 0. X

We may assume hence forth that either ` = 1 or ` = 2.

Consider an exact (2 + `)-coloring on the edges of G, c : E(G) → [2 + `]. Let {u1, v1}

and {u2, v2} denote sets of vertices that are both vertex covers and edges in E(G) (that is,
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if we only have one such set, it is {u1, v1} and if we have two such sets they are {u1, v1} and

{u2, v2}). In either case, since every set of vertices that is both a vertex set and an edge is

an edge adjacent to every edge in E(G), none can be in a 2-matching. Therefore, we may

color these with unique colors. Consider the graph G′, generated by removing any set {u, v}

from the edge set of E(G) if it is a vertex cover.

First, we will use this to establish a lower bound that rb(G,M2) ≥ 2+`. Any two matching

in G must come from E(G′), so if we monochromatically color these edges, the result is an

(` + 1)-coloring with no rainbow M2. Therefore rb(G,M2) ≥ 2 + `. This same method also

yields an upper bound, because G′ satisfies the conditions of Lemma 3.1: it is a connected

graph with n ≥ 5 that contains a two-matching, and there is no set of vertices that is both

an edge in E(G′) and a vertex cover of G′. Therefore, rb(G′,M2) is 2, by Lemma 3.1. So

every exact 2-coloring on G′ has a rainbow M2. Therefore rb(G,M2) = 2 + `. �

Corollary 3.2.1. Let G be a graph with n ≥ 5 that contains a 2-matching. If G has exactly

one set of vertices {u, v} that is both a vertex cover and an edge in E(G), then rb(G,M2) = 3.

4. Rainbow Numbers of Disconnected Paths with Respect to 3-Matchings

When we start proving results about trees we will selectively delete edges whose colors

are repeated. This will allow us to reduce a graph to a smaller case, making induction a

promising approach. Unfortunately, there are complications that arise for trees that confound

the selective deletion method. Therefore, we will consider the rainbow numbers of pairs of

paths with respect to M3 to clearly illustrate the selective deletion method.

To prove an a rainbow number we need both an upper bound and a lower bound. Propo-

sition 4.1 follows directly from Proposition 2.1.

Proposition 4.1. Let Pn1 ∩Pn2 denote the disconnected graph consisting of two paths, one

of length n and one of length m. Then rb(Pn1 ∩ Pn2 ,M3) ≥ 4 for all n ≥ 5,m ≥ 4.
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Theorem 4.1. Let Pn1 ∩ Pn2 denote the disconnected graph consisting of two paths, one

on n1 vertices and one on n2 vertices. Then rb(Pn1 ∩ Pn2 ,M3) = 4 for all n ≥ 3 and m ≥ 1

except (n1, n2) = (4, 3) or (n1, n2) = (4, 4).

Proof. By Proposition 4.1 we already have a the lower bound rb(Pn1 ∩ Pn2 ,M3) ≥ 4 for

all n1 ≥ 3 and n2 ≥ 1.We will show Theorem 4.1 for n1 ≥ 5, n2 ≥ 4 by mathematical

induction first on n1 and then on n2. Starting with (n1, n2) = (5, 4) as a base case. All lower

combinations of (n1, n2) can be shown by inspection.

Base Case (Part 1): Let n1 = 5 and n2 = 4. We know by inspection that rb(P5 ∩

P4,M3) = 4.

Induction Hypothesis (Part 1): rb(Pn1 ∩ P4,M3) = 4 where 5 ≤ n1 ≤ N .

Induction Step (Part 1): Consider G = PN+1 ∩ P4. Let c : E(G)→ [4] be a 4-coloring

of the edges of PN+1 ∩ P4. Let the path PN+1 = (v1, v2, . . . vN , vN+1) be the entire PN+1

component of G. There are two cases; either there exists an edge that shares a color with

either {v1, v2} or {vN , vN+1}, or {v1, v2} and {vN , vN+1} are uniquely colored.

Case 1: If there exists an edge e ∈ E(G) such that e 6= {v1, v2} and c(e) = c({v1, v2}),

or e 6= {vN , vN+1} and c(e) = c({vN , vN+1}) then let G′ ⊂ G created by deleting v1 if

c(e) = c({v1, v2}) or deleting vN+1 if c(e) = c({vN , vN+1}). Apply the induction hypothesis

to G′ to show that there exists a rainbow M3 in G.

Case 2: If there does not exist an edge e ∈ E(G) such that e 6= {v1, v2} and c(e) =

c({v1, v2}), or e 6= {vN , vN+1} and c(e) = c({vN , vN+1}) then both {v1, v2} and {vN , vN+1}

are uniquely colored under c. In this case the M3 given by {v1, v2},{vN , vN+1}, and some

edge e′ ∈ E(G) \ E(PN+1) is rainbow. In either case, rb(Pn1 ∩ P4,M3) = 4.

Therefore, by mathematical induction rb(Pn1 ∩ P4) = 4 for all n1 ≥ 5.

Now, for the second part of the induction, let n1 ≥ 5 be arbitrary but fixed.

Base Case (Part 2): rb(Pn ∩ P4) = 4 by Part 1.

Induction Hypothesis (Part 2): rb(Pn1 ∩ Pn2) = 4 for any n1 ≥ 5 and 4 ≤ n2 ≤M .
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Induction Step (Part 2): Consider the graph G = Pn1 ∩ PN+1. Let c : E(G) → [4] be

a four coloring of the edges of Pn ∩ PM+1. Let the path PN+1 = (v1, v2, . . . , vN , vN+1) be the

entire PN+1 component of G. There are two cases; either there exists an edge that shares a

color with either {v1, v2} and {vN , VN+1}, or {v1, v2} and {vN , VN+1} are uniquely colored.

Case 1: If there exists an edge e ∈ E(G) such that e 6= {v1, v2} and c(e) = c({v1, v2}),

or e 6= {vN , vN+1} and c(e) = c({vN , vN+1}) then let G′ ⊂ G created by deleting v1 if

c(e) = c({v1, v2}) or deleting vN+1 if c(e) = c({vN , vN+1}). Apply the induction hypothesis

to G′ to show that there exists a rainbow M3 in G.

Case 2: If there does not exist an edge e ∈ E(G) such that e 6= {v1, v2} and c(e) =

c({v1, v2}), or e 6= {vN , vN+1} and c(e) = c({vN , vN+1}) then both {v1, v2} and {vN , vN+1}

are uniquely colored under c. In this case the M3 given by {v1, v2},{vN , vN+1}, and some

edge e′ ∈ E(G) \ E(P ) is rainbow.

In either case, rb(Pn1 ∩ Pn2 ,M3) = 4. Therefore, by mathematical induction rb(Pn1 ∪

Pn2 ,M3) = ∆ + 2 for all n1 ≥ 5, n2 ≥ 4. Thus, Theorem 4.1 has been shown. �

Notice that some Pn1 ∪ Pn2 are excluded by Theorem 4.1. The lower bound, rb(Pn ∪

Pm,M3) ≥ 4 can be constructed by coloring two edges in every M3 subgraph the same color.

Further inspection shows that rb(P4 ∪ P3,M3) = 5 and rb(P4 ∪ P4,M3) = 5.

5. Rainbow Numbers of Trees with Respect to 3-Matchings

Theorem 5.1. Let T be a tree with diam(T ) ≤ 3. Then rb(T,M3) = n.

Proof. Let T be a tree with diam(T ) ≤ 3. Since T is a tree, T is connected. A maximum

diameter of length 3 implies that all edges are incident upon at least one of two vertices.

Therefore, there does not exist a M3 ⊆ T . Thus, rb(T,M3) = n. �

Furthermore, the previous argument shows that a path on 5 vertices does not have a M3

subgraph. Therefore, rb(P5,M3) = n.

Theorem 5.2. Let T be a tree with n > 5 and diam(T ) = 4. Let P = (v1, v2, v3, v4, v5) be

a path of length 4 in T . If deg(v3) = 2, then rb(T,M3) = n.
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Proof. Let T be a tree with n > 5 and diam(T ) = 4. Let P = (v1, v2, v3, v4, v5) be a path of

length 4 in T . Assume that there does not exist an edge incident with v3 that is not in P .

This implies that all other edges are incident with either v2 or v4. If this were not the case

then T would either not be connected or T would not have diam(T ) = 4. In this case, all

edges are incident with v2 or v4, which means that there does not exist a M3 subgraph of T .

Therefore, rb(T,M3) = n by definition. Thus, the theorem is proven. �

Lemma 5.1. Let G = X ∪Y ∪Z be a graph where X, Y, Z are disconnected stars such that

|E(X)|, |E(Y )|, |E(Z)| ≥ 1. Then rb(G,M3) = max{|E(X)|, |E(Y )|, |E(Z)|}+ 2 = ∆ + 2.

Proof. Let G = X ∪ Y ∪ Z be a graph where X, Y, Z are disconnected stars such that

|E(X)|, |E(Y )|, |E(Z)| ≥ 1. By Proposition 2.1, we have rb(G,M3) ≥ ∆ + 2. Without

loss of generality, assume |E(X)| ≥ |E(Y )| ≥ |E(Z)|. Let c : E(G) → [|E(X)| + 2] be an

exact |E(X)| + 2-coloring of the edges of G. Without loss of generality, there must exist

e1, e2 /∈ E(X) such that c(e1) = 1, c(e2) = 2 and the colors 1, 2 do not appear in X when c

is restricted to E(X). There are two cases; either e1 and e2 are in different components, e1

and e2 both appear in the same component.

Case 1: Without loss of generality, assume e1 ∈ E(Y ) and e2 ∈ E(Z). If e1 ∈ E(Y ) and

e2 ∈ E(Z) then e ∈ E(X), e1, e2 gives a rainbow M3.

Case 2: Without loss of generality, assume e1, e2 ∈ E(Y ). Without loss of generality,

there must exist e3 ∈ E(X) such that c(e3) = 3. Either c(e) ∈ {1, 2, 3} for all e ∈ E(Z)

or there exists e ∈ E(Z) such that c(e) /∈ {1, 2, 3}. If c(e) ∈ {1, 2, 3} for all e ∈ E(Z),

then there exists e4 ∈ E(X) such that e4 does not share a color with any edge in E(Y ) or

E(Z). In this case choose a rainbow M3 given by e4 and a M2 in Y ∪ Z, which must exist

by Theorem 3.2. If there exists e ∈ E(Z) such that c(e) /∈ {1, 2, 3} then choose e, e1, e3 to

form a rainbow M3.

In either case we have rb(G,M3) ≤ max{|E(X)|, |E(Y )|, |E(Z)|} + 2 = ∆ + 2. With

Proposition 2.1, we have rb(G,M3) = max{|E(X)|, |E(Y )|, |E(Z)|}+ 2 = ∆ + 2. �
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We will use Lemma 5.1 to prove Theorem 5.3 by reducing graphs to the form A = X∪Y ∪Z

and relating ∆A to the maximum degree of the original graph. In particular, there will be

a different answer depending on which disconnected component of A has the most edges.

However, to preform the reduction we will need the following proposition.

Proposition 5.1. Let G and G′ be graphs such that M3 ⊆ G′ ⊂ G where G′ = G − e for

some e ∈ E(G). Then rb(G,M3) ≤ rb(G′,M3) + 1.

Proof. Let G be a graph. Let c : E(G) → [r] be an exact k-coloring of the edges of G. Let

G′ be the graph created by deleting some edge in G. Now, c when restricted to G′ is at

least an exact r− 1-coloring of the edges of G′. Assume that there exist a rainbow M3 in G′

under c. This implies that rb(G′,M3) ≤ r − 1. Then there exists a rainbow M3 in G. Thus,

rb(G,M3) ≤ rb(G′,M3) + 1. �

Proposition 5.1 relates the rainbow number of a graph G to a particular kind of subgraph

G′. Most importantly, it says that adding an edge This is particularly helpful when we can

reduce the maximum degree of a graph or if we can delete edges that cannot possibly be in

a M3 subgraph.

Theorem 5.3. Let T be a tree with n > 6 and diam(T ) = 4. Let P = (v1, v2, v3, v4, v5) be

a path of length 4 in T where deg(v3) ≥ 3. If D = {v2, v3, v4} is a vertex cover of T , then

rb(T,M3) = rb(A,M3) + 3 or rb(T,M3) = rb(A,M3) + 2 , where A is the subgraph of T

created by only using edges incident with exactly one vertex in D.

Proof. Let T be a tree with n > 5 and diam(T ) = 4. Let P = (v1, v2, v3, v4, v5) be a path of

length 4 in T . Let D = {v2, v3, v4} be a vertex cover of T . By Proposition 2.1, rb(T,M3) ≥

∆ + 2. Let A be the subgraph of T only including all of the edges that are incident upon

exactly one vertex v ∈ D. This means that A is of the form V2∪V3∪V4 where Vi is the star cen-

tered on vi. By Lemma 5.1, rb(A,M3) = max{|E(V2)|, |E(V3)|, |E(V4)|}+ 2. There are three

cases; Either |E(V3)| = max{|E(V2)|, |E(V3)|, |E(V4)|}, |E(V2)| = max{|E(V2)|, |E(V3)|, |E(V4)|}
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and |E(V2)| = |E(V3)| + 1, or |E(V2)| = max{|E(V2)|, |E(V3)|, |E(V4)|} and |E(V2)| >

|E(V3)|+ 1.

Case 1: Without loss of generality, assume that |E(V3)| = max{|E(V2)|, |E(V3)|, |E(V4)|}.

By construction ∆T − 2 = |E(V3)|. Therefore, rb(T,M3) = ∆T + 2.

Case 2: Without loss of generality, assume |E(V2)| = max{|E(V2)|, |E(V3)|, |E(V4)|} and

|E(V2)| = |E(V3)| + 1. This implies that deg(v2) = deg(v3) in T . Therefore, rb(T,M3) =

∆T + 3.

Case 3: Without loss of generality, assume |E(V2)| = max{|E(V2)|, |E(V3)|, |E(V4)|} and

|E(V2)| > |E(V3)|+ 1. This implies that deg(v2) = ∆T . Therefore, rb(T,M3) = ∆T + 3.

Thus, Theorem 5.3 has been proven. �

Corollary 5.1.1. Let T be a tree with n > 5 and diam(T ) = 4. Let P = (v1, v2, v3, v4, v5) be

a path of length 4 in T . Let D = {v2, v3, v4} be a vertex cover of T . If deg(v2) = ∆ ≥ deg(v)

for all other v ∈ V (G) such that v 6= v2, the rb(T,M3) = ∆ + 3. Else, rb(T,M3) = ∆ + 2.

Notice that all cases of T with diam(T ) = 4 and n = 6 are covered in Theorem 5.3.

However, there are trees T with diam(T ) = 4 and n > 6 where the set D is not a vertex

cover of T . Interestingly, these trees do not have an ambiguity in rainbow number. This

happens because all edges in T can in fact be in a M3 subgraph when the assumption about

D is relaxed. To cover the remaining cases we need the following theorem.

Theorem 5.4. Let T be a tree with n > 6 and diam(T ) = 4. Let P = (v1, v2, v3, v4, v5) be a

path of length 4 in T . If D = {v2, v3, v4} is not a vertex cover of T , then rb(T,M3) = ∆ + 2.

Proof. Let T be a tree with n > 6 and diam(T ) = 4. Let P = (v1, v2, v3, v4, v5) be a path of

length 4 in T . Assume that D = {v2, v3, v4} is not a vertex cover of T . By Proposition 2.1,

rb(T,M3) ≥ ∆ + 2. We will prove Theorem 5.4 by mathematical induction on the number

of vertices n.

Base Case: Assume T is a tree with n = 7 and diam(T ) = 4. Let P1 = (v1, v2, v3, v4, v5)

be a path of length 4 in T . Let P2 = (v1, v2, v3, v6, v7) be a path of length 4 in T . Let
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c : E(T ) → [5] be an exact 5-coloring of the edges of T . If there exists e ∈ E(T ) such

that either e 6= {v1, v2} but c(e) = c({v1, v2}), or e 6= {v4, v5} but c(e) = c({v4, v5}), or

e 6= {v6, v7} but c(e) = c({v6, v7}), then delete {v1, v2}, {v4, v5}, or {v6, v7} respectively to

form T ′. Apply Theorem 5.3 to get rb(T ′,M3) = 5 and, therefore, rb(T,M3) = 5. If there

does not exist e ∈ E(T ) such that either e 6= {v1, v2} but c(e) = c({v1, v2}), or e 6= {v4, v5}

but c(e) = c({v4, v5}), or e 6= {v6, v7} but c(e) = c({v6, v7}), then {v1, v2}, {v4, v5}, and

{v6, v7} are uniquely colored under c and create a rainbow M3. In either case we have

rb(T,M3) = 5.

Induction Hypothesis: For all trees T with diam(T ) = 4, 7 ≤ n ≤ N , and D is not a

vertex cover of T , we have rb(T,M3) = ∆ + 2.

Induction Step: Let T be a tree with N + 1 vertices and diam(T ) = 4. Let P1 =

(v1, v2, v3, v4, v5) be a path of length 4 in T . Let P2 = (v1, v2, v3, v6, v7) be a path of length 4

in T . Let c : E(T )→ [∆ + 2] be an exact coloring of the edges of T . By assumption, there

exists e ∈ E(T ) \ E(P1 ∪ P2) such that e is incident upon a leaf v ∈ V (T ). There are two

cases; either there exists an edge that is in the same color class as e, or e is uniquely colored.

Case 1: Assume that there exists e′ ∈ E(T ) such that e′ 6= e but c(e) = c(e′). If there

exists e′ ∈ E(T ) such that e′ 6= e but c(e) = c(e′) then delete e from T to form T ′. Apply in

the induction hypothesis to T ′ to get rb(T ′,M3) = ∆ + 2. Therefore, rb(T,M3) = ∆ + 2.

Case 2: Assume that there does not exist e′ ∈ E(T ) such that e′ 6= e but c(e) = c(e′).

This implies that e is uniquely colored under c in T . By assumption, e = {v, u} where v

is a leaf in T . Let T ′ be the graph given by deleting u and all the edges incident upon it.

Since deg(u) ≤ ∆, we are guaranteed that c is at least an exact 2-coloring of T ′ when c is

restricted to E(T ′). Notice that rb(T ′,M2) = 2 by Theorems 3.2, and 3.1. This implies that

there exists a rainbow M2 in T ′ such that c(e′) 6= c(e) for all e′ ∈ E(M2). Therefore, the

3-matching given by E(M2)∪{{e}} is a rainbow M3 in T under c. Thus, rb(T,M3) = ∆ + 2.

In either case we have rb(T,M3) = ∆ + 2. Therefore, by mathematical induction we have

proven Theorem 5.4. �
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Theorems 5.3 and 5.4 highlight a dichotomy between trees that are in some sense “nice”

with respect to M3 and tress that are not. The seemingly nice trees with respect to M3 are

the trees in which every edge is a part of some M3 subgraph. Earlier in the section, we saw

that smaller trees are generally not nice. Later in this section we will see that larger trees

are nice. Unfortunately, we must spend more time in the gray zone by examining trees T

with diam(T ) = 5. Interestingly, the statements of the following two theorems are similar

to those of the previous two.

Theorem 5.5. Let T be a tree with diam(T ) = 5 with n ≥ 7 vertices. Let P = (v1, v2, v3, v4, v5, v6).

If D = {v2, v3, v5} or D = {v2, v4, v5} is a vertex cover of T , then rb(T,M3) = ∆ + 3 or

rb(T,M3) = ∆ + 2.

Proof. Let T be a tree with diam(T ) = 5. Let n ≥ 6 be arbitrary but fixed. Let P =

(v1, v2, v3, v4, v5, v6). Without loss of generality, assume that D = {v2, v3, v5} is a vertex

cover of T . By Proposition 2.1, rb(T,M3) ≥ ∆ + 2. There are two cases; either deg(v5) = ∆,

or deg(v5 6= ∆).

Case 1: Assume that deg(v5) = ∆. We will show that rb(T,M3) > ∆ + 2. Let c :

E(T ) → [∆ + 2] such that c(e) is uniquely colored from 1 to ∆ for e incident upon v5,

c({v2, v3}) = ∆ + 1, and c(e′) = 2 where e′ is incident upon v2 or v3 but not both. Any M3

contain an edge incident upon v2 and a different edge incident upon v3. Therefore, there

does not exist a rainbow M3 subgraph. Thus, rb(T,M3) > ∆ + 2.

Let T ′ be created by deleting {v2, v3} and {v4, v5} from T . By Proposition 5.1, it suffices

to show that rb(T ′,M3) = ∆ + 1. Let Vi be the set of edges incident upon vi in T ′. Notice

that ∆T ′ = ∆ − 1 and T ′ = V2 ∪ V3 ∪ V5 where each component is a star. By Lemma 5.1

rb(T ′,M3) = ∆T ′ + 1 = ∆. Therefore, rb(T,M3) ≤ ∆ + 3. Thus, rb(T,M3) = ∆ + 3.

Case 2: We will prove the remainder of the theorem by mathematical induction on n ≥ 7

vertices.

Base Case: Let T be a tree with diam(T ) = 5, and n = 7. Let P = (v1, v2, v3, v4, v5, v6).

Without loss of generality, assume that D = {v2, v3, v5} is a vertex cover of T . Assume
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that deg(v2) = ∆ > deg(v5) or deg(v3) = ∆ > deg(v5). This implies that deg(v3) = 3. By

inspection rb(T,M3) = 5.

Induction Hypothesis: Let T be a tree with diam(T ) = 5, and 7 ≤ n ≤ N . Let

P = (v1, v2, v3, v4, v5, v6). Without loss of generality, D = {v2, v3, v5} is a vertex cover of T .

Furthermore, deg(v2) = ∆ > deg(v5) or deg(v3) = ∆ > deg(v5). Then rb(T,M3) = ∆ + 2.

Induction Step: Let T be a tree with diam(T ) = 5, and n = N + 1. Let P =

(v1, v2, v3, v4, v5, v6). Without loss of generality, assume that D = {v2, v3, v5} is a vertex cover

of T . Assume that deg(v2) = ∆ > deg(v5) or deg(v3) = ∆ > deg(v5). Let c : E(T )→ [∆+2]

be an exact coloring of the edges of T . Let e ∈ E(T ) \ E(P ) such that e is incident upon

a leaf. There are two cases; either there exists an edge in the same color class as e, or e is

uniquely colored.

Case 2.1 Assume there exists e′ ∈ E(T ) such that e′ 6= e but c(e′) = c(e). Delete e

from T to form T ′. If ∆T ′ = deg(v5), then rb(T ′,M3) = ∆T ′ + 3 by the argument in case

1. However, because deleting e lowered the maximum degree of the graph, and preserved

the exact coloring of c, this implies that rb(T,M3) = ∆ + 2. If deg(v2) = ∆T ′ > deg(v5) or

deg(v3) = ∆T ′ > deg(v5) holds, then we apply the induction hypothesis to get a rainbow M3

in T ′ and, therefore, in T . Thus, rb(T,M3) = ∆ + 2.

Case 2.2: Assume there does not exist e′ ∈ E(T ) such that e′ 6= e but c(e′) = c(e).

This means that e is uniquely colored under c. Let T ′ be the tree formed by deleting e and

all edges adjacent to it. Since e is incident upon a leaf, it is adjacent to at most ∆ − 1

edges. Therefore, c when restricted to T ′ is at least an exact 2-coloring of the edges of T ′.

Notice that by Theorems 3.2 and 3.1, there exists a rainbow M2 in T ′. Let M3 be the rainbow

3-matching in T under c given by the rainbow M2 in T ′ and e. Therefore, rb(T,M3) = ∆+2.

In either case in induction, we have rb(T,M3) = ∆+2. Thus, by mathematical induction, if

T is a tree with diam(T ) = 5, such that T is dominated by D = {v2, v3, v5} or D = {v2, v4, v5}

where P = (v1, v2, v3, v4, v5, v6), and deg(v2) = ∆ > deg(v5) or deg(v3) = ∆ > deg(v5), then

rb(T,M3) = ∆ + 2.

Combining Case 1 and Case 2 shows that Theorem 5.5 holds true. �
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Corollary 5.1.2. Let T be a tree with diam(T ) = 5 with n ≥ 7 vertices. Let P =

(v1, v2, v3, v4, v5, v6). If D = {v2, v3, v5} or D = {v2, v4, v5} is a vertex cover of T . If deg(v5) =

∆ then rb(T,M3) = ∆ + 3. Else rb(T,M3) = ∆ + 2.

Theorem 5.6. Let T be a tree with diam(T ) = 5. Let P = (v1, v2, v3, v4, v5, v6). If D =

{v2, v3, v5} or D = {v2, v4, v5} are not a vertex cover of T , then rb(T,M3) = ∆ + 2.

Proof. By Proposition 2.1, rb(T,M3) ≥ ∆ + 2. We will proceed by induction on the number

of vertices n. Notice that n = 6 and n = 7 are covered by Theorem 5.5. Therefore, our base

case will start with n = 8. There are two base cases.

Base Case 1: Let T be a tree with diam(T ) = 5 and n = 8. Let P1 = (v1, v2, v3, v4, v5, v6).

Let deg(v3) = deg(v4) = 3. Let c : E(T )→ [5] be an exact edge coloring of T . By Proposition

2.1, rb(T,M3) ≥ ∆ + 2. There are two cases; either there exists an edge e ∈ E(T ) in the

same color class as {v3, v7} or {v4, v8}, or {v3, v7} and {v4, v8} are both uniquely colored.

Case 1: Assume there exists e ∈ E(T ) such that either e 6= {v3, v7} and c(e) = c({v3, v7})

or e 6= {v4, v8} and c(e) = c({v4, v8}). Delete the either {v3, v7} or {v4, v8} accordingly, to

form T ′. By Theorem 5.5, there exists a rainbow M3 in T ′.

Case 2: Assume that {v3, v7} and {v4, v8} are both uniquely colored. Then {v2, v2},

{v3, v7}, and {v4, v8} is a rainbow M3 in T .

In either case, there exists a rainbow M3 in T . Thus, rb(T,M3) = ∆ + 2.

Base Case 2: Let T be a tree with diam(T ) = 5 and n = 8. Let P1 = (v1, v2, v3, v4, v5, v6).

Without loss of generality, let P2 = (v1, v2, v3, v7, v8). Let c : E(T ) → [5] be an exact edge

coloring of T . By Proposition 2.1, rb(T,M3) ≥ ∆ + 2. There are two cases. Either there

exists an edge in the same color class as {v7, v8}, or {v7, v8} is uniquely colored.

Case 1: Without loss of generality, assume that there exists e ∈ E(T ) such that e 6=

{v7, v8} and c(e) = c({v7, v8}. Delete {v7, v8} from to T to form T ′. By Theorem 5.5,

rb(T ′,M3) = ∆ + 2. Thus, rb(T,M3) = ∆ + 2.

Case 2: Assume that there does not exist e ∈ E(T ) such that either e 6= {v7, v8} and

c(e) = c({v7, v8}), or e 6= {v1, v2} and c(e) = c({v1, v2}). In this case, both {v1, v2} and
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{v7, v8} are uniquely colored under c. Therefore, M3 given by {v5, v6}, {v1, v2}, and {v7, v8}

is rainbow. Thus, rb(T,M3) = ∆ + 2.

In both cases we have rb(T,M3) = ∆ + 2. Thus, the base case has been demonstrated.

Induction Hypothesis: Let T be a tree with diam(T ) = 5 and 8 ≤ n ≤ N . Let

P1 = (v1, v2, v3, v4, v5, v6). Without loss of generality, let P2 = (v1, v2, v3, v7, v8). Then

rb(T,M3) = ∆ + 2.

Induction Step: Let T be a tree with diam(T ) = 5 and n = N + 1. Let P1 =

(v1, v2, v3, v4, v5, v6). Without loss of generality, let P2 = (v1, v2, v3, v7, v8). By Proposi-

tion 2.1, rb(T,M3) ≥ ∆ + 2. Let c : E(T ) → [∆ + 2] be an exact edge coloring of T . Let

e ∈ E(T ) \ E(P1 ∪ P2) such that e = {v, u} where v is a leaf in T . There are two cases;

either there exists an edge in the same color class as e, or e is uniquely colored.

Case 1: There exists e′ ∈ E(T ) such that e′ 6= e but c(e′) = c(e). In this case, delete e

from T to form T ′. By the induction hypothesis there exists a rainbow M3 in T ′. Therefore,

there exists a rainbow M3 in T . Thus, rb(T,M3) = ∆ + 2.

Case 2: There does not exist e′ ∈ E(T ) such that e′ 6= e and c(e′) = c(e). This means

that e is uniquely colored under c. Let T ′ be the tree created by deleting e and all edges

adjacent to it. Notice that c is at least an exact 2-coloring of the edges of T ′ when it is

restricted to E(T ′). Therefore, by Theorems 3.2 and 3.1, there exists a rainbow M2 in T ′.

Thus, M3 given by E(M2)∪ {e} is rainbow in T under c. That is to say, rb(T,M3) = ∆ + 2.

In either case we have rb(T,M3) = ∆ + 2. Thus, Theorem 5.6 has been proven by

mathematical induction. �

Theorem 5.7. Let T be a tree with diam(T ) ≥ 6. Then rb(T,M3) = ∆ + 2.

Proof. Let T be a tree with diam(T ) ≥ 6. By Proposition 2.1, rb(T,M3) ≥ ∆ + 2. We will

show that rb(T,M3) = ∆ + 2 by induction on the number of vertices, n.

Base Case: Let P7 be the base case. rb(P7,M3) = ∆ + 2 by inspection.

Induction Hypothesis: If T is a tree with diam(T ) ≥ 6 and with 7 ≤ n ≤ N , then

rb(T,M3) = ∆ + 2.
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Induction Step: Let T be a tree with diam(T ) ≥ 6 and N + 1 vertices. Since T has

more than 7 vertices, there exists e ∈ T such that diam(T − e) ≥ 6. Let v be a leaf of T

and e be the edge incident upon it. Let c : E(T )→ [∆ + 2] be an exact coloring of the edges

of T . There are two cases; either there exists an edge in the same color class as e, or e is

uniquely colored.

Case 1: There exists e′ ∈ E(T ) such that e′ 6= e and c(e) = c(e′). In this case, delete e

and v from T to form T ′ ⊂ T with N vertices. By construction, the maximum degree of T ′

is less than or equal to the maximum degree of T . Now, c is an exact ∆ + 2-coloring of T ′

where ∆ is the maximum degree of T . Therefore, by the induction hypothesis, there exists

a rainbow M3 in T ′. Thus, rb(T,M3) = ∆ + 2.

Case 2: There does not exist e′ ∈ E(T ) such that e 6= e′ and c(e) = c‘(e′). That is to

say that the color of e is unique under c. Delete all the edges adjacent to e in T to from T ′

where T ′ the subgraph of T that does not contain e or its endpoints. By construction T ′ is

at least 2 colored under c. Therefore, by Theorems 3.2 and 3.1, there exists a rainbow M2

in T ′. Thus, we can choose a rainbow M3 subgraph of T , namely the rainbow M2 ⊂ T ′ and

e. Thus, rb(T ′,M3) = ∆ + 2.

Thus, by mathematical induction, if T is a tree with diam(T ) ≥ 6, then rb(T,M3) = ∆+2.

�

6. Rainbow Numbers of Large Graphs with Respect to 3-Matchings

Interestingly, the argument for Theorem 5.7 is roughly generalizable to graphs with diam-

eter length 6 or more. However, we must select the edge for deletion in a different manner

than we did in the proof for Theorem 5.7.

Theorem 6.1. Let G be a graph. If diam(G) ≥ 6, then rb(G,M3) = ∆ + 2.

Proof. Let G be a graph with diam ≥ 6. By Proposition 2.1, rb(G,M3) ≥ ∆ + 2. We will

prove the upper bound for Theorem 6.1 by induction on the number of edges m.

Base Case: Let G = P7. By Theorem 5.7, rb(G,M3) = ∆ + 2.
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Induction Hypothesis: Let G be a graph with 6 ≤ m ≤ M edges and diam(G) ≥ 6.

Then rb(G,M3) = ∆ + 2.

Induction Step: Let G be a graph with M + 1 edges and diam(G) ≥ 6. If G is a tree,

then by Theorem 5.7, rb(G,M3) = ∆ + 2. Therefore, we will assume that G is not a tree.

That is, there exists C ⊆ G, where C is a cycle. Let c : E(G) → [∆ + 2] be an exact edge

coloring of G. There are two cases; either there exists an edge in the same color class as e,

or e is uniquely colored.

Case 1: Assume there exists e′ ∈ E(G) and e ∈ E(C) such that e′ 6= e but c(e′) = c(e).

Because e is in a cycle, G′ = G− e is still connected; in fact, diam(G′) ≥ 6. Furthermore, c

is an exact [∆ + 2]-coloring of the edges of G′ when c is restricted to E(G′). Therefore, by

the induction hypothesis, there exists a rainbow M3 in G′. Thus, there exists a rainbow M3

in G.

Case 2: Assume that there does not exist e′ ∈ E(G) and e ∈ E(C) such that e′ 6= e but

c(e′) = c(e). Every edge e ∈ E(C) is uniquely colored. Choose an e ∈ E(C). Let G′ be the

subgraph of G created by deleting e and all the edges adjacent to it. There are two subcases.

Case 2.1: Assume that c when restricted to E(G′) is at least an exact 2-coloring; without

loss of generality, say G′ is colored with [2]. Either there exists a rainbow M2 in G′, in which

case M3 = M2∪ e is a rainbow in G under c; or there does not exist a rainbow M2 subgraph.

Assume we are in the latter case. Since G′ is 2-colored and does not have a rainbow M2,

diam(G′) ≤ 3. Since diam(G) ≥ 6, diam(G′) ≥ 3 by construction. Thus, G′ is a graph with

diam(G′) = 3 and D = {v1, v2} is a vertex cover of G′ for some {v1, v2} ∈ E(G′). This,

in combination with the fact that every edge in C is uniquely colored, implies that there

exists a rainbow M2 in E(G) \ E(G′) such that c(g) /∈ [2] for some g ∈ E(M2). Therefore,

M3 = M2 ∪ e for some e ∈ E(G′) is rainbow in G.

Case 2.2: Assume that c when restricted to E(G′) is monochromatic color 1. This implies

that there are ∆ + 1 colors used on the edges adjacent to e. Therefore, there is a rainbow

M2 ⊂ E(G) \ E(G′), such that c(e′) 6= 1 where e′ ∈ E(M2). Since diam(G) ≥ 6 there exists
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an edge g ∈ E(G′) such that v /∈ g for all v ∈ V (M2). Therefore, M3 = g ∪M2 is rainbow

subgraph of G.

In either case we have a rainbow M3 ⊂ G. Therefore, by mathematical induction rb(G,M3) =

∆ + 2, proving Theorem 6.1. �

7. Further Research

Areas of further research include classifying the rest of the rainbow numbers of graphs with

respect to 3-matchings. In particular, this would involve proving the rainbow numbers of

disconnected graphs. Furthermore, high matching numbers are also an interesting extension

to this paper. In particular, we have the following conjecture.

Conjecture 7.1. Let G be a graph with diam(k ∗ 2) where k ≥ 4. Let D be a set of k − 2

vertices of G, such that the order of the set, DE, containing all edges incident to a vertex in

D is maximized. Then rb(G,Mk) = |DE|+ 2.

This conjecture comes from the briefly discussed notion of “nice” graphs where all edges

are contained in the desired subgraph. Furthermore, this conjecture is motivated by a

generalized version of Proposition 2.1.
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