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Abstract

In 1950, Giussipe Giuga conjectured that an integer n satisfies
n−1∑
k=1

kn−1 ≡ −1 (mod n) if and only if n is prime. Sixty-five years later

and this problem is yet to be solved. The complexity of working in
the integers has indeed proven challenging. To explore this problem
further, we consider the Generalized Giuga Conjecture for ideals in
number rings. We introduce the idea of correspondence between weak
Giuga numbers and weak Giuga ideals. These concepts are further
developed in the quadratic extensions.

1 Introduction

We begin by stating Giuga’s conjecture.

Giuga’s Conjecture. [4] n is prime if and only if

sn =
n−1∑
j=1

jn−1 ≡ −1 (mod n)

The forward direction holds by Fermat’s Little Theorem. Giuga was un-
able to prove the converse, but he determined the conditions necessary for a
counterexample. This is presented in the following theorem.

Theorem 1.1. [2] A composite number n satisfies sn ≡ −1 (mod n) if and
only if for all prime divisors p of n,

1) p | n
p
− 1 2) p− 1 | n

p
− 1
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1 INTRODUCTION

From Theorem 1.1, we have the following definition.

Definition 1.1. A weak Giuga number is a composite number that satisfies
condition 1 of Theorem 1.1.

It follows from the definition that a weak Giuga number is squarefree. Fur-
thermore, squarefree numbers satisfying the second condition were studied
extensively by Robert Carmichael in 1910 and are thus termed Carmichael
numbers. Formally, a Carmichael number is a composite number n that sat-
isfies an ≡ a (mod n) ∀a ∈ Z. By Korselt’s criterion, this is equivalent to n
being square free and p− 1 dividing n/p− 1 for all prime divisors p of n.
Therefore, a counterexample to Giuga’s conjecture is a number which is both
weak Giuga and Carmichael. We characterize this condition in the following
definition.

Definition 1.2. A strong Giuga number is a number that is both weak Giuga
and Carmichael.

There are also equivalent characterizations of weak Giuga numbers.

Theorem 1.2. A composite squarefree number n is a weak Giuga number if
and only if it satisfies

n∑
i=1

iφ(n) ≡ −1 (mod n),

where φ is Euler’s totient function.

Theorem 1.3. [4] A composite number n = p1 · · · pk, pi prime, is weak Giuga
if and only if

k∑
i=1

1

pi
−

k∏
i=1

1

pi
∈ N.

Only a handful of weak Giuga numbers have been discovered. Whether
infinitely many exist is unknown, but it is known that there are infinitely
many Carmichael numbers. On the other hand, strong Giuga numbers have
not been found. If one exists, it has been shown that it would have at least
13,800 prime factors! To overcome this computational nightmare, we move
to number rings and explore Giuga’s conjecture in a broader context.
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2 Generalized Giuga Conjecture

Let K be a number field. Its ring of integers OK is a Dedekind domain, so
every non-zero ideal in OK may be uniquely factored into a product of prime
ideals, up to reordering.
The following notation is used throughout the paper. For composite ideal
N ⊂ OK , N = P1 · · ·Pk, where P i ⊂ OK is a prime ideal for all i. We let
Qi =

∏
j 6=i

Pj. We similarly define qi for n ∈ Z, n = p1 · · · pk.

As given by [3], an appropriate generalization of the conjecture is:

Generalized Giuga Conjecture. Let K be a number field, N an ideal in
OK and define IN to be a complete set of non-zero residues of OK/N , then
N is a prime ideal if and only if

sN =
∑
j∈IN

jN(N )−1 ≡ −1 (mod N ) (1)

It is clear that in the case that OK = Z, this reduces to the original conjec-
ture. As with Giuga numbers, the generalized conjecture fails if there exists a
composite ideal satisfying (1). Such an ideal is characterized by the following
theorem, which provides the generalization of Theorem 1.1.

Theorem 2.1. [3] Let N = P1 · · ·Pk be an ideal of OK. N satisfies (1),
if and only if for all P i,

1) N(Qi) ≡ 1 (mod P i) 2) N(P i)− 1 | N(N )− 1

From the above theorem, the general definitions of weak Giuga ideals and
Carmichael ideals become apparent.

Definition 2.1. A weak Giuga ideal is a composite ideal N ⊂ OK, satisfying
condition 1 of Theorem 2.1.

Similar to weak Giuga numbers, weak Giuga ideals are squarefree in a more
general sense; the norms of all prime factors are relatively prime.

Proposition 2.2. For any prime factors of a weak Giuga ideal, P1 and P2,
we have gcd(N(P1), N(P2)) = 1.
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2 GENERALIZED GIUGA CONJECTURE

Proof. Let us suppose that gcd(N(P1), N(P2)) 6= 1. Let p be the prime
under P1 and P2. Thus as N(P2)|N(Q1), p|N(Q1) and p|N(Q1)− 1. This
directly implies p|1, but this cannot be. Thus, we must have
gcd(N(P1), N(P2) = 1.

Definition 2.2. A Carmichael ideal is a squarefree composite ideal N ⊂ OK

satisfying condition 2 of Theorem 2.1.

Once again, we characterize the counterexamples to the conjecture with a
definition.

Definition 2.3. A strong Giuga ideal is both weak Giuga and Carmichael.

A strong Giuga number must be odd. The following theorem presents the
general result, which says that the norm of a strong Giuga ideal must be odd,
as the norm of all its prime factors are odd.

Proposition 2.3. If N is a strong Giuga ideal in OK, then for all prime
ideals P, such that P |N , N(P) is odd.

Proof. We write N = P1 · · ·Pk. The Carmichael condition states that
N(P i) − 1|N(Qi) − 1 for all i. Assume to the contrary that N(Pj) = 2f

for some prime ideal factor and f ∈ N. By Proposition 2.2, Pj must be the
only factor with even norm. Considering prime factor Pm, m 6= j, we have
N(Pm) − 1|N(Qm) − 1. But this is impossible, as N(Pm) − 1 is even and
N(Qm)− 1 is odd.

We form the following analogous characterizations of weak Giuga ideals. Ex-
tending Theorem 1.2, we have:

Theorem 2.4. [3] A composite square-free ideal N is a weak Giuga ideal if
and only if ∑

j∈IN

jφ(N ) ≡ −1 (mod N )

where φ(n) is the Euler-Totient function for ideals.

Similarly, we generalize Theorem 1.3.
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Theorem 2.5. Let N ⊂ OK be an ideal. N is a weak Giuga ideal if and
only if

k∑
i=1

N(Qi)− 1 ∈ N . (2)

Proof. Weak Giuga =⇒ (2)
By assumption N is a weak Giuga ideal. Thus N(Qi)−1 ∈P i, ∀i = 1, . . . , k.

As seen from the prime factorization of N ,
k∏
i=1

(N(Qi)− 1) ∈ N . We expand

this product, dropping all terms which have a N(N ) as a factor, as N(N ) ∈
N ; this includes any term containing N(Qm)N(Ql), m 6= l. We conclude

(−1)k−1
k∑
i=1

N(Qi) + (−1)k ∈ N , which directly implies
k∑
i=1

N(Qi)− 1 ∈ N .

(2) =⇒ Weak Giuga
k∑
i=1

N(Qi) − 1 ∈ N =⇒
k∑
i=1

N(Qi) − 1 ∈ Pj, ∀j = 1, . . . , k. For any

j = 1, . . . , k, as N(Pj) ∈Pj, N(Qi) ∈Pj,∀i 6= j. From this, we conclude

that
k∑
i=1

N(Qi)− 1− (
∑
i 6=j

N(Qi)) = N(Qj)− 1 ∈Pj as desired.

It is not known if strong Giuga ideals exist; however, infinitely many Carmichael
ideals exist in any normal extension [5]. For two number rings, we have
computationally found weak Giuga ideals, thus showing their existence in
infinitely many extensions by Corollary 4.4, but it is not known if there is
a weak Giuga ideal in every extension or are infinitely many in a single ex-
tension. Our paper predominantly explores weak Giuga ideals as this is the
first step to expanding to the more specific case of strong Giuga ideals.

In the following examples we present some weak Giuga ideals as their prime
factorization in the Gaussian integers and Z(

√
−5).

Example 1. Gaussian integers, Z[i]

1. (1 + i)(3)(4 + i) 5. (1 + i)(47)(631)
2. (71)(107)(211) 6. (79)(131)(199)
3. (1 + i)(79)(631)(1087) 7. (7)(11)(4 + i)(17 + 2i)
4. (47)(71)(139) 8. (1231)(1511)(47 + 10i)
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Example 2. Z(
√
−5)

1. (79)(131)(199) 5. (2, 1 +
√
−5)(3, 1 +

√
−5)(7, 3

√
−5)(6 +

√
−5)

2. (199)(331)(499) 6. (2, 1 +
√
−5)(3, 1 +

√
−5)(

√
−5)

3. (191)(197)(6271) 7. (3, 2 +
√
−5)(7, 4 +

√
−5)(−6 +

√
−5)

4. (239)(251)(4999) 8. (2, 1 +
√
−5)(3, 1 +

√
−5)(

√
−5)(13)(137)

It is worth noting that if a prime factor of a Giuga ideal has the same norm
as some other ideal in OK , then that other ideal can substituted into the
prime factorization and the result will still be weak Giuga. For instance,
from example 1.1, (1 + i)(3)(4− i) is also a weak Giuga ideal.

3 Correspondence

One of the primary motivations for working in the general framework of num-
ber rings is to gain insight into the behavior of weak Giuga numbers. Thus,
we develop the idea of correspondence which relates ideals and numbers. We
begin by defining the corresponding ideal:

Definition 3.1. Given n = p1 · · · pk ∈ N, pi prime, and a ring of integers
OK, we define a corresponding ideal to be N = P1 · · ·Pk, where P i ⊂ OK

is a prime ideal and P i |(pi). We say that n corresponds to N .

We note that there may be many corresponding ideals in OK for a given
n ∈ N. Similarly, we define the corresponding number of the ideal N , n ∈ N.

Definition 3.2. Given ideal N ⊂ OK, we define the corresponding number
of N to be the unique n ∈ N such that N ∩Z = (n).

We say that N is above n or n is below N .

Example 3. Take the Gaussian integers, 30 = 2 · 3 · 5 corresponds to (1 +
i)(3)(2 + i) ⊂ Z[i] because (2) = (1 + i)2, (3) = (3) and (5) = (2 + i)(2− i).

Definition 3.3. N ⊂ OK and N ′ ⊂ OK′ are associated ideals if they lie
above the same n ∈ N. More formally described, N and N ′ are associated if
N ∩Z = N ′ ∩Z. We denote this association N ∼ N ′.
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We note that N ∩Z = (p1 · · · pk) where pi is such that (pi) = P i ∩Z; this
directly implies that if N ∼ N ′, then each ideal has the same number of
prime factors.
The following theorem provides criteria for when an associated ideal of a
weak Giuga ideal is itself weak Giuga.

Theorem 3.1. Let OK and OK′ be number rings. N ⊂ OK and N ′ ⊂ OK′

with N ∼ N ′. If N(N ) = N(N ′), then N is weak Giuga if and only if N ′ is
weak Giuga.

Proof. Assume that N is a weak Giuga ideal. By the preceding comments,
both N and N ′ have k prime factors. By Proposition 2.2, each prime factor
P i of N is above a different prime pi ∈ N. For a given prime factor of N ,
we know that N(P i) = pfi , where pi is the prime beneath P i and f ∈ N.
As N(P i)|N(N ) = N(N ′), there exists a prime factor P ′

i of N ′ above pi.
As N and N have the same number of prime factors, we obtain a bijection
from the prime factors of N to the prime factors of N ′ with N(P i) = N(P ′

i).

As N(P i) = N(P ′
i), P i ∼ P ′

i. By the association, we have P i ∩Z =
(pi) = P ′

i ∩Z. This implies that pi|N(Qi) − 1 = N(Q′i) − 1, and conse-
quently that N(Q′i)− 1 ∈P ′

i for all i.

An equivalent hypothesis for the above theorem is that N and N ′ have the
same number of prime factors, and for each prime factor, the norm is equal,
i.e. N = P1 · · ·Pk ⊂ OK and N ′ = P ′

1 · · ·P
′
k ⊂ OK′ and for each i,

N(P i) = N(P ′
i).

It is natural at this point to ask when a number has a corresponding weak
Giuga ideal. We find that every squarefree composite number corresponds
to a weak Giuga ideal in a cyclotomic extension. By Proposition 2.2, this is
the largest set of numbers possible.

The result shows that looking at corresponding numbers generally is un-
restrictive, and we are encouraged to focus on specific extensions. Section 4
on quadratic extensions does precisely this.

Let ζm be a primitive mth root of unity.

Theorem 3.2. [1, pg.260] Given m ∈ N, let K = Q(ζm) and p ∈ N be a
prime with m = prm1, where r ∈ N ∪ {0}, m1 ∈ N, and p - m1. Let h be
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the least positive integer such that ph ≡ 1 (mod m1). Then for a prime ideal
P ⊂ OK such that P |(p), N(P) = ph.

Theorem 3.3. For every squarefree composite n = p1 · · · pk ∈ N, there exists
OK such that a corresponding ideal N ⊂ OK of n is a weak Giuga ideal.

Proof. Let K = Q(ζn). Let N ⊂ OK be a corresponding ideal of n. By
the preceding theorem, we know that for Pj |(pj), Pj a prime factor of N ,
N(Pj) ≡ 1 (mod n/pj) =⇒ N(Pj) ≡ 1 (mod pi) for all i 6= j. Thus
N(Qi) =

∏
j 6=i

N(Pj) ≡ 1 (mod pi) for all i as desired.

4 Quadratic Extensions

We further our exploration of Giuga’s conjecture in quadratic extensions.
These extensions are very tractable as the norms of prime ideals are simple to
calculate. We consider correspondences between Giuga numbers and Giuga
ideals in quadratic extensions.

Theorem 4.1. Let n ∈ N, n = p1 · · · pk, pi prime for all i. Let OK be a
quadratic extension.

1. If all pi split or ramify in OK, then n is a weak Giuga number if and
only if the corresponding ideal N is a weak Giuga ideal.

2. If all pi are inert in OK and n is a weak Giuga number, a corresponding
ideal N ⊂ OK is a weak Giuga ideal.

Proof. 1. In this case, (pi) = P i,1 P i,2, where P i,j is a nontrivial prime
ideal. We define the corresponding ideal N = P1 · · ·Pk, where P i = P i,1

or P i = P i,2. From the Ramification and Inertial Degree identity (
∑
eifi =

n, where n = 2 for quadratic extensions), we have that N(P i) = pi for all i.
By Theorem 3.1, we see that n is a weak Giuga number if and only if N is
a weak Giuga ideal.

2. In the inert case, we have (pi) = P i a prime ideal. We define N =
P1 · · ·Pk. By the Ramification and Inertial Degree identity, we have that
N(P i) = p2i for all i. For N to be weak Giuga, we must have N(Qi)−1 ∈P i

for all i. N(Qi) − 1 = q2i − 1 = (qi − 1)(qi + 1). By hypothesis, pi|qi − 1,
which implies pi|N(Qi) − 1; equivalently, it is implied N(Qi) − 1 ∈ P i for
all i. Thus, N is a weak Giuga ideal.
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Example 4. In Example 2.6, (2, 1 +
√
−5)(3, 1 +

√
−5)(

√
−5) corresponds

to the weak Giuga number 30. The rational primes underneath the ideals
are 2,3 and 5 respectively. Also note that 2,3 and 5 either split or ramify.
2OK = (2, 1 +

√
−5)2, 3OK = (3, 2 +

√
−5)(3, 1 +

√
−5) and 5OK = (

√
−5)2

From comments following Theorem 3.1, we know that we may construct
Giuga ideals from other Giuga ideals when norms are preserved for the prime
factors of the ideals. The following theorem provides the tools to do exactly
this in quadratic number rings.

Theorem 4.2. Given distinct positive rational primes p1, . . . , pk, and a tri-
partition of {1, . . . , k}, Ur, Us, and Un, we may construct infinitely many dis-
tinct quadratric number rings OK such that Ur, Us, and Un contain indices
for ramified, split, and inert primes respectively.

Proof. We assume pi 6= 2 for i. For the case when pi = 2 for some i, an ad-
ditional equation as given by [6, p.74] is included in the system of equations
(3) below. Otherwise, the argument is the same.

We find a set H of infinite cardinality such that for c ∈ H and K = Q(
√
c),

OK has the desired splitting properties. By [6, p.74], if c is such that

c ≡ ai (mod pi),∀ i ∈ Us
c ≡ bi (mod pi),∀ i ∈ Un,

(3)

where ai is a nonzero quadratic residue of pi and bi is a quadratic nonresidue
of pi, then OK will have the desired splitting properties for pi, i ∈ Us ∪ Un.
As pi ≥ 3 for all i ∈ {1, . . . , k}, the desired ai and bi exist. As gcd(pi, pj) = 1
for i 6= j, we apply the Chinese Remainder Theorem to find a residue class
c̄ of Z/SZ, S =

∏
i∈Us∪Un

pi, such that for c ∈ c̄, the system of equations (3)

is satisfied. We note that c̄ = {t + Sx : x ∈ Z}, for some t, 0 < t < S,
with gcd(t, S) = 1; this follows from our choice of nonzero quadratic residues.

Let us now consider Ur. For OK to have the desired properties, we must
have pi|c, for all i ∈ Ur [6, p.74]. Thus c ∈ W̄ = {Wy : y ∈ Z}, W =

∏
i∈Ur

pi.

Thus our desired H = {c ∈ W̄ ∩ c̄ : c is squarefree}. Let us show that this set
is nonempty and of infinite cardinality. Consider c ∈ W̄ ∩ c̄. c = Wy = t+Sx
for some x, y ∈ Z. We show that such x and y exist. We rewrite our equa-
tion as Wy + (−S)x = t. By Bezout’s Identity, there exist x0, y0 ∈ Z such
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that Wy0 + (−S)x0 = gcd(W,−S) = 1. Multiplying by t, we construct a
general solution to our original equation: x = tx0 + rW and y = ty0 + rS,
r ∈ Z. Thus for c ∈ W̄ ∩ c̄, we may write c = W (ty0 + rS), r ∈ Z. We
now show that there are infinitely many nonsquares of this form. Clearly,
this condition will be satisfied if there are infinitely many primes of the form
ty0 + rS. By Dirichlet’s Theorem on arithmetic progressions, this is true if
gcd(ty0, S) = 1. If gcd(ty0, S) 6= 1, then gcd(y0, S) 6= 1 as t and S are rela-
tively prime. However, by construction of y0, this would imply there exists
p ≥ 2 such that p|1. This of course cannot be the case, and we conclude
gcd(ty0, S) = 1. From previous remarks, we conclude that H is of infinite
cardinality, as desired.

Note that this proof holds so long as Ur, Us, or Un is nonempty.

Corollary 4.3. There are infinitely many quadratic extensions OK such that
n = p1 · · · pk ∈ N, a weak Giuga number, corresponds to a weak Giuga ideal
N . There also exists infinitely many OK such that (n) is a weak Giuga.
Furthermore, if n is a strong Giuga number, there are infinitely many OK

with a corresponding strong Giuga ideal, N .

Proof. By Theorem 4.1, we have that N is a weak Giuga ideal if p1, . . . , pk are
ramified or inert for all i. Theorem 4.2 shows that we may construct infinitely
many OK such that this is true. In the inert case, (n) is the corresponding
Giuga ideal. If n is a strong Giuga number, N is a strong Giuga ideal in the
ramified case as N(P i) = pi for all i.

Corollary 4.3 shows that a weak Giuga number corresponds to infinitely many
weak Giuga ideals in quadratic extensions under weaker conditions than those
of Theorem 3.1. This motivates us to ask whether a weak Giuga number can
correspond to a weak Giuga ideal in all quadratic extensions. Theorem 4.5,
although of interest in its own right, is used to show that this cannot be the
case.

Corollary 4.4. Let OK be a quadratic number ring. Given a weak (strong)
Giuga ideal N ⊂ OK we may find infinitely many other quadratic number
rings with a weak (strong) Giuga ideal.

Proof. We know from Theorem 3.1 that if we find K ′ = Q(
√
c) such that each

corresponding prime pi has the same splitting properties in OK′ as OK , then
there exists a weak Giuga ideal in OK′ . By Theorem 4.2, a set F of infinite

10



4 QUADRATIC EXTENSIONS

cardinality such that c ∈ F constructs a desired ring of integers exists. This
proof holds for strong Giuga ideals as preservation of splitting properties
implies preservation of norms for associated prime ideals.

From our examples in Section 2, we may now conclude infinitely many
quadratic extensions have weak Giuga ideals. Although Corollary 4.4 is
somewhat limited in scope, it is of hope that similar results may be used
to reduce the complexity of showing that all quadratic extensions contain a
weak Giuga ideal.

Theorem 4.5. Let OK be a quadratic extension. If n is a weak Giuga number
that has a corresponding weak Giuga ideal N in OK, and n has at least one
prime factor which splits or ramifies and at least one which is inert, then n
is a nonunit multiple of another weak Giuga number.

Proof. Partition {1, . . . , k} into Us and Un, such that for i ∈ Us, pi splits or
ramifies in OK , and for i ∈ Un, pi is inert in OK . For i ∈ Us, N(P i) = pi, and
for i ∈ Un, N(P i) = p2i . As N is a weak Giuga ideal, we have pi|N(Qi)− 1
for all i. Let mi =

∏
j∈Un−{i}

pj. We have N(Qi)−1 = qi(mi−1) + (qi−1). By

hypothesis, pi|qi−1 for all i; thus, pi|mi−1 for all i, as it clearly cannot divide
qi. Narrowing this statement, we have pi|mi−1 for all i ∈ Un. Consequently,∏
i∈Un

pi is a weak Giuga number. By hypothesis, Us 6= ∅, and we have our

conclusion.

If n is an even weak Giuga number which satisfies the hypothesis of Theorem
4.5 and 2 ramifies or splits in the given extension, then we have the existence
of an odd weak Giuga number. As a strong Giuga number must be odd,
further study of this relation may be of value.

Corollary 4.6. Given weak Giuga number n, there are infinitely many quadr–
atic number rings OK for which the corresponding ideals are not weak Giuga
ideals.

Proof. Partition {1, . . . , k} into Us and Un such that |Un| = 2. By Theorem
4.2, there exist infinitely many OK such that for i ∈ Us, pi splits or ramifies,
and for i ∈ Un, pi is inert. By Theorem 4.5, m =

∏
i∈Un

is a weak Giuga

number. But this is a contradiction, as there exist no weak Giuga numbers
with exactly two prime factors. Thus in each such OK , N is not a weak
Giuga ideal.
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for i ∈ Us, pi splits or ramifies

5 Open Questions

This exploration of Giuga ideals has just scratched the surface. Through
computational examples, we have found an abundance of weak Giuga ideals
in basic number rings. Such findings suggest that the following questions
may be more tractable in the context of number rings, and are of immediate
interest:

1. Which number rings have infinitely many weak Giuga ideals?

2. Do weak Giuga ideals exist in every number ring?

3. Does Giuga’s conjecture fail in any number ring?
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