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Abstract

In a self-service bike-share system we have a finite number of stations
with limited capacity. In any real-world situation, some stations will have
more demand than others and will accumulate or lose bikes. The system
operator must use vehicles to pick up the bikes from full stations and
redistribute them in empty ones. We define the problem and explore a
hyper-heuristic approach previously used successfully to solve the Vehicle
Routing Problem.

1 Introduction

The implementation of public bike-sharing systems has had a significant increase
worldwide in the recent years. As of 2014, they are available in more than
700 cities including Barcelona, Montreal, New York City, and Paris and are
also currently being introduced in a number of cities like Pittsburgh. Bike-
sharing systems amplify public transportation by offering people an affordable,
convenient way to move around large crowded cities without having to worry
about motorized traffic or parking. Furthermore, they boost environmental
sustainability and public health.

Typically, a bike-sharing system consists of multiple stations distributed over
favorable spots in the service area. A user may rent a bike from any station
and return it later to any other station. Due to demographic characteristics
and usage patterns throughout the day, many stations tend to overload with
bikes whereas other stations will run completely empty. An overloaded station
will disable any user from delivering a bike back and an empty station will
disable any user from picking up a bike. In both cases, this will result in user
dissatisfaction and imbalance in the whole bike system. Therefore, a balancing
procedure becomes necessary, and action must be taken by the system operator
to satisfy the users needs. The system operator sends out a fleet of vehicles that
visit each station, picking bikes up from overloaded stations and delivering them
to empty stations to balance the system. This can be done either statically or
dynamically. In the former, the procedure is done overnight when the system

1



is not in use and user demand is negligible. In the latter case, the procedure is
done during service hours, where user demand is constantly changing.

Many have addressed the static case of the bike-sharing problem; however,
most research in the dynamic case is relatively recent. Our work explores a
new approach to solving the dynamic public bike-sharing system by adapting
a dynamic vehicle routing problem hyper-heuristic. First, we discuss methods
previously used to approach the problem. Then, we explore the hyper-heuristic
method. Finally, we attempt to apply the aforementioned method to the bike-
sharing problem.

2 Previous work

Given the extremely short time frame afforded us, we knew that we wanted
to pursue an alternate approach of an existing problem. However, as we read
the many papers already written about the bike-share problem, we noticed a
few distinct trends: most involved a mixed integer problem (MIP), metaheuris-
tics, or some combination of the two. We felt that these approaches had been
exhausted and wanted to pursue something more unique.

2.1 Vehicle routing problem

In our reading of past work and related problems–in particular the vehicle rout-
ing problem– we came across an evolutionary-based hyper heuristic approach
called the EH-DVRP proposed by Garrido and Riff in their paper, DVRP: a
hard dynamic combinatorial optimization problem tackled by an evolutionary
hyper-heuristic [2]. The EH-DVRP solves hard instances for the dynamic vehi-
cle routing problem, and in our work we explore its application to the dynamic
bike-sharing problem.

The VRP is very similar to the bike-sharing problem in that there is a fleet
of vehicles making pickups and deliveries to a set of customers. This makes
it incredibly easy to adapt the bike-sharing problem into a VRP. For example,
in the dynamic VRP we can have new customers appear. Translated to the
bike-sharing problem, each ’customer’ is now a bike station, and the updated
customer list now represents the updated demand of the corresponding station.

2.2 Bike-sharing instances

Though ideally it would be possible to apply the hyper-heuristic method to a
real-world situation, perhaps even the bike-sharing system in Pittsburgh, the
systems in major cities that we have data for all have upwards of 100 stations,
and we wanted a smaller instance that would be easier to parse. It was for this
reason that we used the generated instances given by Contardo, Rousseau, and
Morency in their paper ”Balancing a dynamic public bike-sharing system” [1].
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3 Problem description

Before reading the problem description, let’s take a brief look at the static bike-
sharing problem, which we’ve adapted heavily to fit a VRP instance. Our bike-
sharing problem can be modeled as a complete weighted digraph G = (V,E)
with V = {v0, v1, ..., vn} as the set of bike stations where v0 is the central depot
and E = {(vi, vj) : vi, vj ∈ V, i 6= j} as the arcs between pairs of stations. These
arcs can be represented by the cost matrix C = (cij)(cij ∈ R+) where cij is
just the distance between stations i and j. In the vehicle depot v0 there are m
vehicles with capacities Q1, ..., Qm which start their routes R0, ..., Rm from v0.
The remaining nodes v1, ..., vn represent the stations that either give or receive
q1, ..., qn bikes. We want to find feasible vehicle routes to pick up and deliver
bikes. A solution is feasible if and only if it satisfies these constraints:

• Each vehicle route starts and ends at the depot v0.

• The length of each route does not exceed an upper bound D, the length
of the working day.

• Each station v ∈ V − {v0} is visited exactly once and the service time
(loading/unloading the bikes) is bounded between [0, D].

• The total demand of each route cannot exceed truck capacity Q.

The optimal solution for this problem minimizes total vehicle travel time.
In the dynamic case, the initial problem can change as stations become full and
empty throughout the day, while the vehicles are on their routes. This will be
represented as ’new’ stations v1

′, ..., vn
′. The problem then acquires new con-

straints:

• ’New’ stations v1
′, ..., vn

′

• Stations v with a bike imbalance from the end of the previous work day

• New imbalances can be found

• We don’t know how many bikes will be delivered/picked up at each ’new’
station vk

′

Using our adapted VRP and and the new constraints from the dynamic version,
we can express our dynamic bike-sharing problem as a DVRP:

-Definitions:

• t: elapsed service time such that t ∈ [0, D]

• m: number of vehicles

• V ′: unserved stations
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• vs
k: last station served by vehicle

• Sk
t: sequence of stations v0

k, ..., vl
k served by the k-th vehicle before t

-Constants:

• Cil: travel distance from vi to vl where vi ∈ V ′ ∪ {vsl, ..., vsm}

• ql: bikes delivered/picked up at station vl

• Qt
k: capacity of vehicle k at t

• Dt
k: remaining time of vehicle at time t before reaching D

-Variables:

xlk =

{
1, if vehicle k serves station vl : vl ∈ V ′ ∪ {vsk}
0, otherwise

yilk =

{
1, if vehicle goes directly from station vi to vl, vi ∈ V ′ ∪ {vsk} and vl ∈ V ′

0, otherwise

-Objective function:

min
∑

ilk,i6=l

cil ∗ yilk

-Constraints:

m∑
k=1

xlk = 1,∀vl ∈ V ′, vl 6= v0 (1)

x0k =

{
1, ∀k = 1...m|Sk

0 = ∅
0, otherwise

(2)∑
l

xlk ∗ ql ≤ Qt
k,∀k = 1...m,∀vl ∈ V ′ ∪ {vks} (3)∑

i

yilk +
∑
j

yljk = xlk,= 1...m,∀vl ∈ V ′ ∪ {vsl...vsm} (4)

∑
i,l

ci,l ∗ yilk ≤ Dk
t,∀k = 1...m (5)

∑
i,l

yilk ≤ |S|,
S ⊆ V ′ ∪ {vs1, ...vs

m}
2 ≤ |S| ≤ n− 1

∀k = 1...m

(6)

4



(1) Limits the service of each remaining station to one visit from a single vehicle.
(2) means that all vehicles start their journey at the depot v0. The third con-
straint represents the remaining capacity for each vehicle, updated over every
time window. (4) means that a vehicle k serves a station vl if and only if it
belongs to that vehicle’s particular schedule. (5) Means that to finish the route
before D, travel times of each vehicle k are limited to Dk

t. (6) establishes the
maximum number of stations that can be served by vehicle k.

4 The hyper-heuristic approach

4.1 Definition of hyper-heuristic

A hyper-heuristic is a high-level method used to solve hard computational search
problems. Heuristics are commonly used to obtain a good enough solution in
reasonable time when the optimization problem at hand is intractable. Because
heuristics are problem-specific, this leads us to the use of metaheuristics, which
are more general and can find sufficient solutions to a wide range of optimiza-
tion problems without having to deeply adapt to each problem. Metaheuristics
are recognized as efficient approaches for many optimization problems. How-
ever, research and experiments reveal that certain metaheuristics perform bet-
ter for certain problems. In the same problem, different metaheuristics perform
better for different instances. Furthermore, for that same instance, different
metaheuristics perform better at different stages of the solution process. This
introduces us to hyper-heuristics, where we can generate the sequence of meta-
heuristics that best fits the problem at hand. The term hyper-heuristic is rel-
atively new and the idea is to construct an algorithm that combines different
metaheuristics in a way such that each would compensate, to some extent, for
the weaknesses of others. Where metaheuristics have a search space of solu-
tions, a hyper-heuristic has a search space of heuristics. So rather than trying
to solve the problem directly, we attempt to find the right method or sequence
of heuristics in a given situation. Thus, a hyper-heuristic is thought of as a
heuristic to choose heuristics.

4.2 Why we chose the hyper-heuristic method

The public bike-sharing problem has been tackled by several approaches as
mentioned in the previous section. The static case of the problem has been
exhausted with different strategies, with the most popular being Mixed Integer
Programming, Constraint Programming techniques, and Metaheuristics. On
the other hand, the much harder dynamic case has had only few approaches
so far. To the best of our knowledge, hyper-heuristics have never been used
in either case to solve the public bike sharing system. Thus, a hyper-heuristic
approach to the public bike-sharing system is indeed novel.

In addition to its novelty, we feel the hyper-heuristic approach is very appro-
priate for the dynamic case of the public bike-sharing system: Using a constantly
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evolving genetic program is ideal for a dynamic problem that is always chang-
ing. In the dynamic case, throughout the service hours of the system, users are
concurrently picking up and delivering bikes to stations. So for one instance
of the problem, demand will regularly change at different points in time and
therefore a route assumed to be optimal in one point in time might not be in
the next. Due to this dynamic behavior, certain metaheuristics may perform
better than others at different points in time and different stages of the solution
process. A hyper-heuristic comes in handy here because it is dynamic in nature,
it can easily adapt to changing scenarios like the dynamic bike-sharing system.

4.3 The EH-DVRP

Before we apply the evolutionary based hyper-heuristic approach to the public
bike-sharing problem, let us first explain how it works with the Vehicle Routing
Problem(VRP) as demonstrated in Garrido.

The hyper heuristic framework proposed by Garrido includes three classes
of low-level heuristics that were meticulously selected based on design consider-
ations. These three classes are constructive, repairing and ordering heuristics.
The four constructive heuristics included in this approach were chosen based
on their ability to communicate and construct feasible solutions together and
tackle the problem with different service area distribution. Likewise, the repair-
ing heuristics incorporated were chosen based on their collaboration but also on
the type of repairing mechanism such that it allows the discovery of new poten-
tial insertions. Similar considerations were taken when selecting the ordering
heuristics, as they are used prior the construction step to arrange the customers
insertion list. Because there exists several implementation differences between
the heuristics, Garrido and Riff define the following two main data structures: a
list of new unassigned customers and a set of routes. Since all heuristics can dis-
cern partial states of the problem using these basic structures, this will enhance
cooperation among all heuristics in the framework.

In this framework, the hyper-heuristic will generate a sophisticated sequence
of low-level heuristics where this sequence is represented as a chromosome and
each low-level heuristic is represented as a gene. Thus, a chromosome is made
of a sequence of genes and is regarded as an individual. Each gene has a con-
structive and repairing heuristic as its two main components. The constructive
heuristic constructs and optimizes partial routes and consists of parameters,
which are the ordering heuristic (O), constructive-improvement heuristic (CI)
and the number of customers to be inserted. On the other hand, the repairing
heuristic improves all the routes constructed so far. The genes are applied se-
quentially to gradually insert customers and repair the set of routes, improving
partial states of the problem.

The approach uses the traditional fitness function to find and preserve the
best individuals through the search. New individuals are found by applying four
operators, three of which are mutation-like operators: the asexual operator, the
add operator and the replace operator. The fourth is the cross operator, which is
a recombination operator. The goal of these operators is to increase exploration
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capability, include new heuristics in different steps to obtain better coopera-
tion, and allow the possibility of eliminating heuristics that wont contribute to
improving candidate solutions.

The procedure of the EH-DVRP is as follows: An initial population P is
generated to include all combinations of heuristics at random positions. The
hyper-heuristic explores the heuristics space starting from the initial population.
At each generation, one operator is applied with equal probability to allow the
production of new offspring O to the current population.

Garridos and Riffs approach is designed to perform three tasks: obtain new
orders that appear during service hours, optimize and update routes, and send
vehicles to serve customers. This is all done within a strategic system that
consists of two main components to handle these tasks: the Event Manager and
the Hyper-heuristic. The Event Manager serves as an interface between the real
world and the optimization process that is done by the Hyper-heuristic. It is
important to mention that the working day is divided into discrete time slices
of equal length to deal with the dynamism of the problem. During the working
day, the Event Manager collects new orders, stores them in the system and
then creates a corresponding static VRP-like instance at each time slot. Based
on this information, the Hyper-heuristic sets out to find the best sequence of
heuristics. The Event Manager then creates the new optimized solutions and
commits orders to the respective vehicles. Finally, it updates the positions of
the customers and the states of the vehicles.

5 Experimental Results

5.1 Reproducing dynamic VRP results

In our attempt to apply the EH-DVRP to the dynamic bike-sharing system, we
first set out to reproduce Garridos results. We run an instance of 50 randomly
distributed stations with 50 available vehicles. The results are shown below,
depicting the stages of the optimized route solutions for 5 vehicles.
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Figure 1. The EH-DVRP applied to a Garrido instance. The different colors represent different
routes.

As can be seen, the EH-DVRP is able to obtain sufficient routes for the
dynamic VRP. Compared with low-level heuristics and MIPs, this approach is
better able to adapt to dynamic problems and is flexible enough to allow for
additional heuristics and constraints. Thus, the performance of the EH-DVRP
on the VRP is proven to be quite successful and certainly outperforms other
heuristic-based methods and state-of-the-art algorithms in several cases.

5.2 Application to dynamic bike-sharing system

We consider instances from Contardo, one of the first works to address the
dynamic case of the bike-sharing system. Contardo generated many instances
with different numbers of stations, namely 25, 50, and 100 which are either
clustered or randomly distributed in a plane with x and y coordinates in the
interval [0, 60]. They define a time horizon of 2 hours that is divided into 24
periods of 5 minutes each or 60 periods of 2 minutes each [1]. We run the
EH-DVRP with a clustered instance of 50 stations and time discretization of 24
periods.
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Figure 2. The EH-DVRP applied to a Contardo instance of 50 clustered stations.
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Our results demonstrate that the EH-DVRP can indeed be applied to the
bike-sharing problem. Treating the dynamic bike-sharing problem as a vehicle
routing problem, the hyper-heuristic generated sufficient routes for the vehicles.
Although the routes don’t appear to be ideal, we believe this is due to capacity
constraints. Further experimentation using different vehicle capacities, service
area distribution, constraints etc. could yield a more optimal solution.

6 Conclusions and future work

To conclude, we believe that Garrido and Riff’s hyper-heuristic method is ex-
tremely useful and applicable to many different kinds of optimization problems.
However, it is extremely complicated and hard to use. Any future research
should involve taking some time to better understand the method as well as
adapting it to better fit the bike-sharing problem. Another possible topic would
be to either introduce additional constraints or select different low-level heuris-
tics.
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