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Abstract

We predict the ellipticity of galaxies from a variety of variables available through data from the Canada-France-Hawaii
Lensing Survey. A survey of regression methods, including both nonparametric and tree-based methods, are applied to the prediction
problem and results are discussed and compared. We present graphical methods for finding interactions between predictors. Leave-
one-out cross-validation, K-fold cross-validation, and the Akaike information criterion are used to choose parameters of the models.
We find that projection pursuit regression performs the best on a seperate test set of data. Tree-based models performed poorly
due to strong linear relationships in the data.

I. INTRODUCTION

A. Motivation
Gravitational lensing, the bending and distortion of light

by a gravitational field, provides an important tool to probe
the distribution of matter in the universe. For example, the
masses of galaxies and galaxy clusters can be estimated by
their distortion of the light of distant galaxies lying past them.
The primary problem encountered in research in gravitational
lensing is our lack of knowledge of the intrinsic, pre-lensing,
shapes of galaxies. This is compounded by the fact that many
applications of gravitational lensing, e.g. in detection of dark
matter, are to cases where the lensing is very weak.

The above reasons make weak gravitational lensing a statis-
tical problem. While we cannot reliably determine the lensing
of a single galaxy due to lack of knowledge of the galaxy’s
intrinsic shape, we can search for correlations in the ellipticity
of galaxies in a small region of space. That is, given a galaxy
sample and an predicted value of the ellipticities of these
galaxies, we can detect gravitational lensing if the observed
ellipticities of these galaxies differs from the predicted el-
lipticities in a systematic manner. The error introduced by
predicting the ellipticity as the median of all galaxy ellipticies
is called shape noise. A major struggle in weak gravitational
lensing research is to reduce shape noise. Our study seeks to
reduce shape noise by predicting the ellipiticity of a galaxy
using regression analysis.

B. The Prediction Problem
Prediction problems are common in many areas of research

and industry. In a prediction problem, one seeks to predict a
response y from some collection of predictors x. We denote
our prediction, or fitted value, as ŷ. The error in our prediction
is called the residual, defined as ε = y − ŷ. Weights can be
assigned to each data point to determine how important that
point will be when fitting our model.

In our study we focus on shearing from gravitational
lensing, that is, its effect on a galaxy’s ellipticity. Ellipticity
is defined as e = A−B

A+B , with A and B being the semimajor
and semiminor axes in the CFHTLenS catalog, respectively.

We use data provided by the Canada-France-Hawaii Lensing
Survey (CFHTLenS). Details of the collection and processing
of the data present in the CFHTLenS catalog can be found in
Erben et al. (2012) and Heymans et al. (2012). We used the
first 100,000 observations of the survey in our study. Of these,
we excluded all which were not galaxies, were marked by the
survey as a bad fit, or which were missing measurements for
any of the predictors used. After these eliminations 32,120
observations remained. These were divided into a training set
of size 24,022 and a test set of size 8,098. All models were fit
using solely data from the training set. Weights were provided
by the survey as calculated in Miller et al. (2012).

The observations in the test set were used to compare the
predictive power of different models. We define the test sum
of squares to be the weighted sum of the squared residuals on

the test set, TSS ≡
∑ntest

i=1
wi(yi−ŷi)

2∑ntest

i=1
wi

. A low TSS is desired

as it indicates the model predicts well on an independent set
of data.

The logarithm of the ellipticity was taken as our response
throughout the study. This was chosen after viewing plots
of residuals vs. fitted for a variety of models using both
the ellipticity and its logarithm as the response. A common
feature of those models with the ellipticity as the response
was residuals whose spread increased with the fitted value.
Plots of residuals vs. fitted with the logarithm as a response
had spread independent of fitted value (Fig. 1).

Predictors in our models were chosen at the beginning
of the study. For nonparametric models they were the scale
length (scalelength), half-light radius (FLUX_RADIUS),
full width half maximum (FWHM_WORLD), isophotal
area (log(ISOAREA_WORLD)), signal-to-noise ratio
(log(SNratio)), bulge fraction (bulge_fraction),
magnitude in the infrared band (exp(MAG_i) or
e_MAG_i_scaled), the maximum brightness (MU_MAX),
total flux (log(model_flux)), and the ascension-declination
tree (pos_factor, see Sec. V.B.). For tree-based methods
the ascension-declination tree was replaced by including the
ascension and declination as predictors. The redshift was also



−0.1 0.0 0.1 0.2 0.3 0.4 0.5

−
0
.2

0
.0

0
.2

0
.4

Ellipticity as Response

Fitted

R
e
s
id

u
a
l

−4 −3 −2 −1

−
4

−
2

0
2

Log(Ellipticity) as Response

Fitted

R
e
s
id

u
a
l

Figure 1. Plots of residuals vs. fitted for the GAM with the ellipticity
as the response (top) and the logarithm of the ellipticity as the
response (bottom).

included in tree-based models. Logarithmic and exponential
transforms of some predictors were made to more evenly
distribute the data. The definitions and calculations of most
predictors can be found in Erben et al. (2012). Information on
the calculation of galaxy redshifts can be found in Hildebrandt
et al. (2012).

II. NONPARAMETRIC REGRESSION: METHODS

Nonparametric regression encompasses a wide variety of
regression methods. A common feature of all nonparametric
methods is an ability to adapt to the complexity of the
relationship between the response and the predictors.

A. Types of Nonparametric Regression

Two types of nonparametric regression were used in our
study, smoothing splines (abbreviated as spline) and super
smoother (supsmu). In the smoothing splines method, we
model ŷ = f(x), with f(x) chosen to minimize RSS +
λ
∫
|f ′′(x)|2dx. λ is a smoothing parameter and is chosen

through leave-one-out cross-validation (Sec. II.D.). It is also
possible to fix the effective degrees of freedom of the model,
in which case only functions f(x) with the specified effective
degrees of freedom will be considered. If used, the effective
degrees of freedom is also a smoothing parameter.

Friedman’s super smoother was also used for nonparametric
regression, as described in Friedman J. H. (1984). The super
smoother contains a parameter span which is analogous to the

span of local linear regression, and is a smoothing parameter
of the method.

B. The Generalized Additive Model

Nonparametric regression can be expanded to include mul-
tiple predictors using the generalized additive model (GAM).
Here we model the response as a linear combination of
1-variable nonparametric functions of the predictors: ŷ =
β0 +

∑p
i=1 βifi(xi). In the GAM’s implementation in R, the

nonparametric functions are fit using the smoothing spline
method.

It is possible to expand nonparametric regression to multiple
predictors by simply modeling y as a single nonparametric
function of all predictors, ŷ = f(x1, x2, ..., xp). There are
two issues with this expansion of nonparametric regression.
The first, referred to as the curse of dimensionality, is that
points in our predictor space become increasingly spread out
in predictor space as we include more predictors in our model.
This leads to issues of overfitting. The second is that p-variable
nonparametric functions are much more complex than the
GAM with p predictors. For both of these reasons the GAM
is preferred.

C. Projection Pursuit Regression

Projection pursuit regression (PPR) is a generalization of the
GAM. Here we model the response as a linear combination
of 1-variable ridge functions of a linear combination of pre-
dictors, ŷ = β0+

∑M
k=1 βkfk(αk

Tx). The ridge functions are
determined using some method of nonparametric regression,
and the number of of ridge functions M is a smoothing param-
eter of PPR. The two methods of nonparametric regression in
PPR considered in this study are Freidman’s super smoother
and smoothing splines.

D. Cross-Validation

Cross-validation (CV) is a set of techniques used to antic-
ipate the performance of a model on an independent set of
data. Thus we can use cross-validation to choose parameters
which control the complexity of our models.

We focus primarily on K-fold cross-validation. We ran-
domly partition our data into K equal sized subsets, or folds.
Our model is fit using data from all folds but one, and is tested
on the excluded fold. The (weighted) sum of squared errors
is computed. This is repeated for all folds, and the results are
in turn summed. We seek to minimize this final sum.

A specific example of K-fold cross-validation is leave-one-
out cross-validation, where we take K = n.

R commonly uses a variant on cross-validation called gen-
eralized cross-validation (GCV).

E. Akaike Information Criterion

The Akaike information criterion (AIC) is an alternative to
cross-validation. Here we seek to minimize the AIC, defined
as AIC = 2k+n log(RSS

n ). AIC is typically preferred on much
smaller data sets.
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F. Graphical Methods for Finding Interactions

It is also possible to create GAMs containing nonparametric
functions of multiple predictors. Due to the drawbacks of
multiple variable nonparametric functions discussed in Sec.
II.B. this is not desirable unless it significantly improves our
model. We define the GAM to contain an interaction between
two predictors if a nonparametric function of both predictors
is included in the model. Two graphical methods of searching
for a need for interactions between predictors were developed.
In both, we begin with a model containing no interactions.

Our first method is the highlighted residuals method (Fig.
8). We identify two subsets of the data: those with |ε| in the
top 10% of all residuals and ε < 0, and those with |ε| in the top
10% of all residuals and ε > 0. A scatterplot of all data against
two predictors is then overlaid with red circles around each of
the extremely negative residuals, and blue circles around each
of the extremely positive residuals. This method allows easy
visualization of the density of extreme residuals in different
planes of predictor space. The percentage of residuals circled
can be easily raised or lowered from 10%. This technique
performs poorly in particular dense regions of predictor space,
which can be fixed by zooming in the plot on that particular
region.

Our second method is a heatmap of residuals (Fig. 2). Here
we choose two predictors and subdivide the region spanned
by the two predictors into evenly spaced cells. The mean
of the residuals in each cell is then evaluated. Each cell is
colored depending on its mean of residuals, and a scatterplot
is overlaid. To emphasize high magnitude residual points while
avoiding overcrowding the plot, points in top 10% of residuals
by absolute value are plotted larger than other points. This
method works well for identifying regions in which the model
systematically overestimates or underestimates the response.

III. NONPARAMETRIC REGRESSION: RESULTS

A. Binning by Redshift

Binning by redshift was attempted using the GAM, but
found to have little effect on the predictive power of the model.
Data with redshift less than 1.5 were partitioned into three
subsets: those with redshift less than .5, those with redshift
between .5 and 1, and those with redshift between 1 and 1.5.
Those with redshift greater than 1.5 comprised only 7.7% of
the total data and were not considered in this analysis.

A GAM was fit on each of the redshift bins, and the sum of
the residuals was computed and compared to that of a model
without redshift binning. The TSS (now excluding all points
with redshift greater than 1.5 from the test sample) was found
to decrease by .58% with redshift binning. This was a small
improvement for the 3-fold increase in the complexity of the
model, and binning by redshift was not used for the rest of
the study.

B. Scale Length and Half-Light Radius Interaction

Using the graphical methods of Sec. II.F graphs of all
combinations of predictors were examined. Only one com-
bination of predictors showed a clear interaction: the scale
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Figure 2. A heatmap of residuals plot of the half-light radius and
scalelength in the GAM before including an interaction (top), and
after including the interaction term (bottom).

length and the half-light radius. In both graphing methods
two regions of systematic error in our model were apparent.
The model was changed to include an interaction between
the two predictors and heatmaps of residuals before and after
including the interaction are shown in Fig. 2. It is clear visually
that including the interaction improved the model in both
regions of systematic error. A contour plot of the 2-variable
nonparametric function of the half-light radius and scalelength
confirms that the model detected this non-additive relationship
between the variables (Fig. 3). The TSS on the test set was
decreased from .293 to .278, and 5.12% decrease.

C. Comparison of Cross-Validation and AIC in PPR

1) Setup: We used each of the two methods of nonparamet-
ric regression implemented in R for PPR, super smoother and
smoothing splines. Each of the methods contains a smoothing
parameter, the span and the effective degrees of freedom
respectively. These can be chosen for each ridge function
through GCV or fixed for all ridge functions.

We tried five different PPR models. The first was using
super smoother, with span chosen by GCV. We used K-fold
CV to determine the number of ridge functions. Second we
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Figure 3. Contour plot of the nonparametric function in the GAM of
the half-light radius and scale length overlaid on a scatterplot of the
data.

considered super smoother with the span fixed. 20 different
values of span were tested, from .05 to 1.0 in intervals of .05.
K-fold CV is performed on each of them, and the combination
of span and number of ridge functions which gave the lowest
sum of squared errors in cross-validation was chosen for the
model.

Next three different methods using smoothing splines were
tried. The first was with the degrees of freedom chosen by
GCV, and number of terms by K-fold CV (Fig. 4). We
then tried varying the degrees of freedom from 1 to 20, and
chose the combination of degrees of freedom and number of
ridge functions using K-fold CV, as in super smoother. Our
third method is choosing the smoothing parameters such that
they minimize the AIC. This was done analogous to cross-
validation with fixed degrees of freedom.

In all instances K-fold CV considered for PPR, K-fold CV
was performed four times with the seed of R’s random number
generator reset to a different value each time. This was to
reduce random variation in cross-validation results from the
selection of folds. An average of the sum of squared errors for
each K-fold CV was used in determining the optimal choice
of smoothing parameters.

2) Results and Discussion: The chosen smoothing param-
eter values and number of ridge functions for each of the
5 methods were compiled into a table below. For both AIC
and CV on smoothing splines two combinations of smoothing
parameters were chosen: that which gave the minimum of each
criterion, and that which gave the 2nd minimum. In both cases
the smoothing parameter values that gave the 2nd minimum
were lower (less complex) than those which gave the 1st

minimum, and thus were worth considering.
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Figure 4. Results of cross-validation for PPR using super smoother
with span chosen by GCV for each ridge function. Cross-validation
was performed 4 times with different seeds in R’s random number
generator. Results of individual trials are in black, the mean of all
trials is plotted in red. In this case M = 6 was found to be optimal.

Method CV or AIC Specifications TSS
supsmu CV span = .5, M = 7 .260
supsmu CV span by GCV, M = 6 .257
spline CV df by GCV, M = 2 .306
spline CV df = 5, M = 10 .280
spline Both df = 5, M = 6 .279
spline AIC df = 8, M = 8 .291

PPR with Super Smoother and span chosen by GCV (Fig.
4) was found to give the lowest TSS. Results of CV for
fixed span using super smoother are shown in Fig. 5. It was
found that the optimal number of terms in PPR increases with
increasing span. This was expected; it is essentially a trade
off between complexity in the number of ridge functions and
the complexity of each individual ridge function. This was a
common feature of varying both the nonparametric smoothing
parameter and the number of ridge functions in PPR.

IV. TREE-BASED MODELS: METHODS

Tree-based models are another common method in predic-
tion problems and machine learning. We used regression trees,
implemented through tree() and rpart() in R, and an
expansion of regression trees, random forests.

A. Regression Trees

In a regression tree, we recursively partition the data into
small subsets, and in each subset model the response as
the mean of the particular subset. This can be represented
graphically as in Fig. 6. Starting at the top, at each node of
the tree we follow the left branch if the condition is true, and
the right branch if false. The prediction for each subset is

4
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Figure 5. Results of cross-validation for PPR using super smoother
with span fixed, for span = .01, .1, .5, and .9. Span = .5 with M = 7
was found to have the lowest sum of squared errors.

displayed at the corresponding terminal node. An important
limitation is that we only consider splits containing simple
inequalities in one predictor.

There are two general steps to ‘growing’ a regression tree. A
greedy algorithm is used to grow as complicated a tree as the
limitations of R allow – ideally each data point would belong
to it’s own subset. Second, we prune the tree by selecting
the ’optimal’ subtree of the tree. In the tree function in
R, subtrees are selected to minimize RSS + αk, where k
is the number of nodes. α is a smoothing parameter and
chosen through cross-validation. In the rpart function in R,
a subtree is chosen by recursively ‘snipping’ off splits which
do not reduce the deviance of the tree by cp. cp is also a
smoothing parameter, and is chosen through cross-validation
as implemented in rpart().

B. Random Forests

Next we consider random forests, an extension of regression
trees. To motivate this extension, we first discuss the concept
of stability of a regression method. We define a regression
method to be stable if a small change in the initial data
produces a small change in the model’s predictions. Regression
trees as discussed in the previous section have been found to be
unstable due to the greedy algorithm used to grow the full tree.
Random forests attempt to reduce this instability by growing
many different trees and averaging the predictions of each of
them.

In the random forest method, we first draw B samples of
size n with replacement from the initial data. Next, we fit a
regression tree on each sample Si using the same procedure as
in the previous section, but with one alteration: when growing
a tree, at each split we consider only splits from among m

|
bulge_fraction < 0.3816bulge_fraction < 0.3678exp(MAG_i) < 1.91295e+10

scalelength < 5.27885

scalelength < 5.11195

scalelength < 4.911
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Figure 6. Graph of regression tree with parameters set just above their
values at failure. The tree was generated using rpart(), with

of the p predictors. This reduces correlation between the trees
and increases the stability of the method. A prediction is found
by averaging over the predictions of each of the B trees.

There are two tuning parameters to be varied in this model,
B and m. We use a technique similar to cross-validation to
choose the values of these parameters. Because the samples are
chosen with replacement, for each sample there will be data
points in the initial data which are left out of the sample. This
set of left-out data is called the out-of-bag (OOB) sample.
The out-of-bag error of ith tree defined to be OOBErrori =∑

j∈Si
wj(yj − ŷj)2. The total OOB error is the sum of the

individual OOB errors. We choose B and m such that they
will minimize the total OOB error.

V. TREE-BASED MODELS: RESULTS

A. Failure of Regression Trees

The tree() function in R failed because of strong linear
relationships in our data. The function is limited to trees
of depth 32 or less, and failed from this limitation for any
reasonable choice of input parameters. A plot of the tree just
before failing illustrates that nearly all splits were made with
respect to the scale length (Fig. 6). In our earlier linear models,
the scale length was found to be highly correlated with the
ellipticity, more so than any other single predictor.

Due to the failure of tree(), a second implementation of
regression trees in R, rpart(), was tried. rpart() uses
a different algorithm for generating its full tree, and did not
encounter any issues relating to the depth of the tree. A tree
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Figure 7. Scatterplot of ascension and declination. The upper region
lies in the rectangle 57.18 < δ < 57.80, 210.30 < α < 211.97. The
lower region lies in the rectangle 54.04 < δ < 54.13, 208.97 < α <
210.57. Both angles are measured in degrees.

was grown and pruned as described in the methods. The test
sum of squares was computed to be TSS = .342.

B. Ascension and Declination Tree

A scatterplot of the declination δ against the ascension α
for our data is shown in Fig. 7. The galaxies observed lie in
two rectangular regions.

The circled residuals graphing method (Sec. II.F.) was
applied to a plot of the declination and ascension (Fig. 8). We
see there are nearly entirely low (red) residuals in the lower
region. Plots of the upper region showed a more balanced
distribution of high and low residuals. Motivated by this
observation, a tree was fit on the residuals of the GAM with
the ascension and declination as predictors. The ascension-
declination tree was used for all other nonparametric methods.
This was found to reduce the TSS from .281 to .278 in the
GAM, a 1.1% decrease.

C. Random Forests

We found B = 500 and m = 7 (out of 13 predictors)
to give the lowest OOB error. Multiple trials with different
seeds in R’s random number generator were performed for our
choice of m. Due to issues with computation time, our choice
of m was based on results for the OOBerror on a sample
of size 2,500, chosen at random from our training sample.
Once m was chosen, our final random forest was fit using all
data in the training sample. The resulting random forest gave
TSS = .283.

VI. CONCLUSION

A. Summary

The TSS for all methods discussed were computed and
compiled in a table below. The (effective) degrees of freedom
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Figure 8. Highlighted residuals graphing method applied to the lower
region of the ascension vs. declination plot in Fig. (NUMBER).
The residuals were calculated from the GAM without the ascension-
declination tree (top) and with the tree (bottom).
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(EDF) for each model was also computed when possible to
display the difference in complexity between models. Of all
methods, PPR using super smoother, with span chosen through
GCV and with 6 ridge functions, was found to have the
lowest TSS. Other varieties of nonparametric regression also
performed well.

Method Specifications TSS EDF
Mean .591 1
Linear .332 12
GAM .278 76
GAM w/o interaction .293 74
GAM w/o tree .281 62
PPR supsmu, span = .5, M = 7 .260
PPR supsmu, span by GCV, M = 6 .257
PPR spline, df by GCV, M = 2 .306 56
PPR spline, df = 5, M = 10 .280 180
PPR spline, df = 5, M = 6 .279 108
PPR spline, df = 8, M = 8 .291 168
Tree prune w/ cp = .00056 .342
Forest m = 7 .282

The effective degrees of freedom of PPR with smoothing
splines was found to be much greater than that of the GAMs,
despite having fewer ridge functions than GAM has predictors.
This is due to the increased degrees of freedom that come with
choosing the components of the projection direction vectors.

Tree-based models performed substantially worse than non-
parametric models. Random forests were the only tree-based
method which gave a TSS in the range of most nonparametric
models. As discussed in Sec. V.A., this is likely due to
strong continuous relations between certain predictors and the
response in our data.

Plots of residuals against fitted values and actual against
fitted values for the the best fitting PPR are shown in Fig. 9.
As with all models, the distribution of residuals is skewed, with
more extreme values less than 0. This might be a consequence
of taking the logarithm of the ellipticity, with 0 ≤ e < 1, as
our response.

B. Future Work

Increasing the number of data points used would increase
the reliability of our model. This would also allow the data to
encompass a wider range of ascensions and declinations, and
our ascension-declination tree could be refit to incorporate the
new regions.

Trees in combination with linear or nonparametric regres-
sion could be tried. This could fix the failure of tree()
and produce a model with results comparable or better than
nonparametric regression alone. One concern would be the
computation time required for such a model.

The ellipticity can also be defined as (e21 + e22)
1/2, with e1

and e2 found as in Heymans et al. (2012), and provided in the
CFHTLenS data. The two definitions are not identical. Our
definition of ellipticity has the advantage that we know the
error associated with each galaxies ellipticity, as the errors of
A and B are provided in the data. Similar methods could be
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Figure 9. Plots of residuals against fitted values (top) and actual
vs. predicted (bottom) for the best fitting model, PPR with super
smoother and span chosen through GCV. The line y = ŷ is displayed
on the bottom plot.

applied to this second definition of the ellipticity and results
could be compared.
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