SET THEORY BASIC EXAM: SAMPLE

 $_{
m JC}$

Attempt four of the following six questions. All questions carry equal weight.

(1) Let θ be regular. Prove that if κ is a cardinal less than θ and $\kappa \subseteq M \prec H(\theta)$ then $M \cap \kappa^+ \in \kappa^+$. Prove that if $\kappa \leq \lambda$ then $H(\kappa)$ is a Σ_1 -elementary substructure of $H(\lambda)$.

Prove that the following are equivalent properties for a set $S \subseteq \omega_1$:

- (a) S is stationary.
- (b) There is a countable $M \prec H(\omega_2)$ such that $S \in M$ and $M \cap \omega_1 \in S$.
- (2) Define the classes HOD and L. Explain carefully why $HOD^L = L^{HOD} = L$. You may use any of the basic theorems about L and HOD, as long as you quote them correctly and explain why they can be applied.
- (3) Define the concepts ω_1 -tree, Aronszajn tree, Souslin tree, and special Aronszajn tree. Prove that Souslin trees are not special.

Let S and T be ω_1 -trees. Define $S \otimes T$ to be the set of pairs $(s,t) \in S \times T$ with ht(s) = ht(t), ordered in the natural way.

- (a) Show that if S is any ω_1 -tree then $S \otimes S$ is not a Souslin tree.
- (b) Use \diamondsuit to build Souslin trees S and T such that $S \otimes T$ is Souslin.
- (4) Let κ be uncountable and regular. Define the concepts of *club subset of* κ and *stationary subset of* κ , and explain how to extend them to subsets of ordinals of uncountable cofinality. State Fodor's lemma.

Define a relation < on stationary subsets of κ : S < T iff there is a club set $C \subseteq \kappa$ such that $S \cap \alpha$ is stationary in α for all $\alpha \in C$ with $cf(\alpha) > \omega$.

- (a) Prove that < is transitive.
- (b) Prove that < is well-founded.
- (5) Carefuly state the Condensation Lemma, and use it to prove that GCH holds in L.
- (6) Let U be a normal measure on the measurable class κ . Carefully define the transitive class Ult(V, U), and explain why there is a non-trivial elementary embedding from V to Ult(V, U).

Prove that if κ is measurable, U is a normal measure on κ and M = Ult(V, U) then M is not closed under κ^+ -sequences and $V_{\kappa+2} \nsubseteq M$.

1