Basic Exam in Set Theory September 3, 2019

Note: You may request elaborations on notation but not hints.

Problem 1 (10 points)

Let λ be an uncountable regular cardinal. Let

$$\langle A_{\alpha} \mid \alpha < \lambda \rangle$$

and

 $\langle B_{\alpha} \mid \alpha < \lambda \rangle$

be two sequences of subsets of λ such that

$$\{A_{\alpha} \mid \alpha < \lambda\} = \{B_{\alpha} \mid \alpha < \lambda\}.$$

Prove there exists a set C that is closed and unbounded in λ and

 $C \cap \triangle_{\alpha < \lambda} A_{\alpha} = C \cap \triangle_{\alpha < \lambda} B_{\alpha}.$

Reminder about notation: \triangle is the diagonal intersection operator.

Problem 2 (20 points)

Let λ be an uncountable cardinal. Prove the following are equivalent.

- (1) λ is a strongly inaccessible cardinal.
- (2) For every $0 < \kappa < \lambda$ and sequence $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ of subsets of λ , there exists $\langle B_{\alpha} \mid \alpha < \kappa \rangle$ such that
 - (a) $\bigcap_{\alpha < \kappa} B_{\alpha}$ has cardinality λ and
 - (b) for every $\alpha < \kappa$, either $B_{\alpha} = A_{\alpha}$ or $B_{\alpha} = \lambda A_{\alpha}$.

Remark on terminology: Please use the phrase

 $\langle B_{\alpha} \mid \alpha < \kappa \rangle$ is a flip of $\langle A_{\alpha} \mid \alpha < \kappa \rangle$

to refer to property (2)(b) in your solution.

Hint for (1) implies (2):

Let \mathcal{F} be the family of flips of \vec{A} . Prove that $\lambda = \bigcup_{\vec{B} \in \mathcal{F}} \bigcap_{\alpha < \kappa} B_{\alpha}$.

Problem 3 (40 points)

Assume V = L. Let κ be an infinite cardinal and $\lambda = \kappa^+$. For each ordinal α such that $\kappa < \alpha < \lambda$, let $h(\alpha)$ be the least $\eta > \alpha$ such that

 $L_{\eta} \models \text{ZFC} - P + \text{``There exists a surjection from } \kappa \text{ onto } \alpha.$ ''

Define

$$\mathcal{F}_{\alpha} = \mathcal{P}(\alpha) \cap L_{h(\alpha)}$$

and

$$\mathcal{G}_{\alpha} = \mathcal{P}(\alpha) \cap L_{h(\alpha)+1}.$$

- (1) Prove that $|\mathcal{G}_{\alpha}| = \kappa$ whenever $\kappa < \alpha < \lambda$.
- (2) Consider an arbitrary $A \subseteq \lambda$.
 - (a) Prove there exists an ordinal α such that $\kappa < \alpha < \lambda$ and

$$A \cap \alpha \in \mathcal{F}_{\alpha}.$$

(b) Prove there is a club subset C of λ so that, for every $\alpha \in C$,

$$A \cap \alpha \in \mathcal{F}_{\alpha}.$$

(c) Prove there is a club subset C of λ so that, for every $\alpha \in C$,

$$A \cap \alpha \in \mathcal{F}_{\alpha}$$

and

$$C \cap \alpha \in \mathcal{G}_{\alpha}.$$

What you are allowed to use for Problem 3: You may cite the theorem that L is a model of ZFC + GCH and specific facts and lemmas about L and $<_L$ that went into the proof of this theorem in 21-602 in Fall, 2018. For example, you may state the Condensation Lemma and simply write, "This was proved in 21-602". However, nothing about \Diamond principles may be cited without definitions and proofs.

Hints and remarks regarding Part (2)

- Obviously, (2)(c) implies (2)(b) implies (2)(a).
- The proof I have in mind involves the cardinal $\mu = \lambda^+$ and certain elementary substructures $Y \prec H_{\mu}$.
- The proof that \Diamond_{λ} holds in L, which was given in 21-602, shares ideas with the solution to Problem 3 but there are differences. The proof you saw of \Diamond_{λ} is related but not the same!

Problem 4 (10 points)

Let M be a transitive class model of ZFC and T be a tree on ω such that $T \in M$. Prove that at least one of the following holds.

- (1) $[T] \subseteq M$.
- (2) There is a perfect subtree S of T such that $S \in M$.

Additional instructions for Problem 4: You may use machinery from the proof the Cantor Perfect Set Theorem but you must explain your notation.

Your solution must be sufficiently attentive to the difference between truth in V and truth in M. If you are claiming a statement is absolute, then you need to be precise about which statement is absolute and why it is absolute, citing results from 21-602 when appropriate.

Problem 5 (10 points)

Let M be a transitive class model of ZFC. Let \mathfrak{A} and \mathfrak{B} be two structures of the same finite language, both of which belong to M. Assume that

 $M \models$ The universe of \mathfrak{A} is countable.

Suppose that there is an elementary embedding from \mathfrak{A} to \mathfrak{B} . Prove that there exists $\pi \in M$ such that π is an elementary embedding from \mathfrak{A} to \mathfrak{B} .

Additional instruction for Problems 5: Your solution must be sufficiently attentive to the difference between truth in V and truth in M. If you are claiming a statement is absolute, then you need to be precise about which statement is absolute and why it is absolute, citing results from 21-602 when appropriate.

Problem 6 (10 points)

Let λ be a regular cardinal and

 $S \subseteq \{ \alpha < \lambda \mid \alpha \text{ is a limit ordinal of uncountable cofinality} \}.$

Assume that S is stationary in λ . Let

 $T = \{ \alpha \in S \mid S \cap \alpha \text{ is not stationary in } \alpha \}.$

Prove that T is stationary in λ .