Basic Exam in Set Theory

September 3, 2019
Note: You may request elaborations on notation but not hints.

Problem 1 (10 points)

Let λ be an uncountable regular cardinal. Let

$$
\left\langle A_{\alpha} \mid \alpha<\lambda\right\rangle
$$

and

$$
\left\langle B_{\alpha} \mid \alpha<\lambda\right\rangle
$$

be two sequences of subsets of λ such that

$$
\left\{A_{\alpha} \mid \alpha<\lambda\right\}=\left\{B_{\alpha} \mid \alpha<\lambda\right\}
$$

Prove there exists a set C that is closed and unbounded in λ and

$$
C \cap \triangle_{\alpha<\lambda} A_{\alpha}=C \cap \triangle_{\alpha<\lambda} B_{\alpha} .
$$

Reminder about notation: \triangle is the diagonal intersection operator.

Problem 2 (20 points)

Let λ be an uncountable cardinal. Prove the following are equivalent.
(1) λ is a strongly inaccessible cardinal.
(2) For every $0<\kappa<\lambda$ and sequence $\left\langle A_{\alpha} \mid \alpha<\kappa\right\rangle$ of subsets of λ, there exists $\left\langle B_{\alpha} \mid \alpha<\kappa\right\rangle$ such that
(a) $\bigcap_{\alpha<\kappa} B_{\alpha}$ has cardinality λ and
(b) for every $\alpha<\kappa$, either $B_{\alpha}=A_{\alpha}$ or $B_{\alpha}=\lambda-A_{\alpha}$.

Remark on terminology: Please use the phrase

$$
\left\langle B_{\alpha} \mid \alpha<\kappa\right\rangle \text { is a flip of }\left\langle A_{\alpha} \mid \alpha<\kappa\right\rangle
$$

to refer to property (2)(b) in your solution.
Hint for (1) implies (2):
Let \mathcal{F} be the family of flips of \vec{A}. Prove that $\lambda=\bigcup_{\vec{B} \in \mathcal{F}} \bigcap_{\alpha<\kappa} B_{\alpha}$.

Problem 3 (40 points)

Assume $V=L$. Let κ be an infinite cardinal and $\lambda=\kappa^{+}$. For each ordinal α such that $\kappa<\alpha<\lambda$, let $h(\alpha)$ be the least $\eta>\alpha$ such that

$$
L_{\eta} \models \mathrm{ZFC}-\mathrm{P}+\text { "There exists a surjection from } \kappa \text { onto } \alpha . "
$$

Define

$$
\mathcal{F}_{\alpha}=\mathcal{P}(\alpha) \cap L_{h(\alpha)}
$$

and

$$
\mathcal{G}_{\alpha}=\mathcal{P}(\alpha) \cap L_{h(\alpha)+1} .
$$

(1) Prove that $\left|\mathcal{G}_{\alpha}\right|=\kappa$ whenever $\kappa<\alpha<\lambda$.
(2) Consider an arbitrary $A \subseteq \lambda$.
(a) Prove there exists an ordinal α such that $\kappa<\alpha<\lambda$ and

$$
A \cap \alpha \in \mathcal{F}_{\alpha} .
$$

(b) Prove there is a club subset C of λ so that, for every $\alpha \in C$,

$$
A \cap \alpha \in \mathcal{F}_{\alpha} .
$$

(c) Prove there is a club subset C of λ so that, for every $\alpha \in C$,

$$
A \cap \alpha \in \mathcal{F}_{\alpha}
$$

and

$$
C \cap \alpha \in \mathcal{G}_{\alpha} .
$$

What you are allowed to use for Problem 3: You may cite the theorem that L is a model of ZFC + GCH and specific facts and lemmas about L and $<_{L}$ that went into the proof of this theorem in 21-602 in Fall, 2018. For example, you may state the Condensation Lemma and simply write, "This was proved in 21-602". However, nothing about \diamond principles may be cited without definitions and proofs.

Hints and remarks regarding Part (2)

- Obviously, (2)(c) implies (2)(b) implies (2)(a).
- The proof I have in mind involves the cardinal $\mu=\lambda^{+}$and certain elementary substructures $Y \prec H_{\mu}$.
- The proof that \diamond_{λ} holds in L, which was given in 21-602, shares ideas with the solution to Problem 3 but there are differences. The proof you saw of ∇_{λ} is related but not the same!

Problem 4 (10 points)

Let M be a transitive class model of ZFC and T be a tree on ω such that $T \in M$. Prove that at least one of the following holds.
(1) $[T] \subseteq M$.
(2) There is a perfect subtree S of T such that $S \in M$.

Additional instructions for Problem 4: You may use machinery from the proof the Cantor Perfect Set Theorem but you must explain your notation.

Your solution must be sufficiently attentive to the difference between truth in V and truth in M. If you are claiming a statement is absolute, then you need to be precise about which statement is absolute and why it is absolute, citing results from 21-602 when appropriate.

Problem 5 (10 points)

Let M be a transitive class model of ZFC. Let \mathfrak{A} and \mathfrak{B} be two structures of the same finite language, both of which belong to M. Assume that

$$
M \models \text { The universe of } \mathfrak{A} \text { is countable. }
$$

Suppose that there is an elementary embedding from \mathfrak{A} to \mathfrak{B}. Prove that there exists $\pi \in M$ such that π is an elementary embedding from \mathfrak{A} to \mathfrak{B}.

Additional instruction for Problems 5: Your solution must be sufficiently attentive to the difference between truth in V and truth in M. If you are claiming a statement is absolute, then you need to be precise about which statement is absolute and why it is absolute, citing results from 21-602 when appropriate.

Problem 6 (10 points)

Let λ be a regular cardinal and

$$
S \subseteq\{\alpha<\lambda \mid \alpha \text { is a limit ordinal of uncountable cofinality }\} .
$$

Assume that S is stationary in λ. Let

$$
T=\{\alpha \in S \mid S \cap \alpha \text { is not stationary in } \alpha\} .
$$

Prove that T is stationary in λ.

