SET THEORY BASIC EXAM: JANUARY 2017

Attempt four of the following six questions. All questions carry equal weight.

- (1) Define the terms cardinal, singular cardinal, regular cardinal, strong limit cardinal. Prove that if κ is a singular strong limit cardinal then $2^{\kappa} = \kappa^{\mathrm{cf}(\kappa)}$. Prove that for any infinite cardinal κ , $\mathrm{cf}(2^{\kappa}) > \kappa$.
- (2) State the Condensation Lemma for L, and give a brief outline of the proof.

Assuming that V = L, prove that:

- (a) If X is countable with $X \prec L_{\omega_1}$, then $X = L_{\alpha}$ for some countable α .
- (b) There is a countable X with $X \prec L_{\omega_2}$ which is not of the form L_{α} for any ordinal α .
- (3) Define the terms Aronszajn tree and Souslin tree.

Assume that T is an ω_1 -tree and there exists a function $f : T \to \omega$ such that for all s and t in T, $s <_T t \implies f(s) \neq f(t)$. Prove that:

- (a) T is Aronszajn.
- (b) T is not Souslin.
- (4) Let S be a stationary set of countable limit ordinals, and let $(x_{\alpha})_{\alpha \in S}$ be such that $x_{\alpha} \subseteq \alpha$ and x_{α} is cofinal in α with order type ω . Given $T \subseteq S$, say that a function g is good for T if dom(g) = T, g is 1 1 and $g(\alpha) \in x_{\alpha}$ for all $\alpha \in T$. Prove that:
 - (a) If T is countable, there exists g which is good for T.
 - (b) If T is stationary, there exists no g which is good for T.
 - (c) If T is non-stationary, there exists g which is good for T.

(5) For $f, g \in {}^{\omega}\omega$ say that $f <^{*} g$ (f is eventually dominated by g) if there exists n such that f(m) < g(m) for all m > n. A set $X \subseteq {}^{\omega}\omega$ is unbounded if there is no $g \in {}^{\omega}\omega$ such that $f <^{*} g$ for all $f \in X$, and dominating if for all $f \in {}^{\omega}\omega$ there exists $g \in X$ with $f <^{*} g$.

Let κ be the least cardinality of an unbounded set and λ the least cardinality of a dominating set. Prove that:

- (a) κ is uncountable and regular.
- (b) $cf(\lambda) \ge \kappa$.

SET THEORY BASIC EXAM: JANUARY 2017

(6) State and prove the Reflection Theorem. Define the class HOD, and outline a proof that HOD is a transitive class model of ZFC set theory. Prove that \aleph^V_{ω} is a singular cardinal in HOD.