SET THEORY BASIC EXAM: SEPTEMBER 2016

Attempt four of the following six questions. All questions carry equal weight.

- (1) Prove that \Diamond_{ω_1} implies the following guessing principle (diamond for functions): there is a sequence $\langle f_\alpha : \alpha < \omega_1 \rangle$ such that $f_\alpha : \alpha \to \alpha$, and for every $f : \omega_1 \to \omega_1$ there are stationarily many α such that $f \upharpoonright \alpha = f_\alpha$. Outline some construction of a Souslin tree assuming \Diamond_{ω_1} .
- (2) Give the definition of the class HOD, and prove that it is a model of the Axiom of Replacement (you may assume the Reflection Theorem, but you must state it correctly).
- (3) State Shoenfield's absoluteness theorem and outline the main steps in the proof. Prove that the assertion "there is a countable transitive model of ZFC" is Σ₂¹. We call this assertion φ. Prove that if M is a countable transitive model of ZFC with On ∩ M minimal then φ is false in M but true in V, and explain why this does not contradict Shoenfield's theorem.
 (4) Prove that the statement of the statem
- (4) Prove that:
 - (a) If κ is a singular cardinal and the function $\lambda \mapsto 2^{\lambda}$ is eventually constant for $\lambda < \kappa$ with eventual value μ , then $2^{\kappa} = \mu$.
 - (b) The generalised continuum hypothesis (GCH) states that $2^{\kappa} = \kappa^+$ for all infinite cardinals κ . Assuming GCH prove that if κ and λ are infinite cardinals with $\lambda < cf(\kappa)$ then $\kappa^{\lambda} = \kappa$. What happens when $\lambda \geq cf(\kappa)$?
- (5) Let $\theta > \omega_2$ be regular and let $<_{\theta}$ be a wellordering of H_{θ} . Prove that:
 - (a) If $M \prec (H_{\theta}, \in, <_{\theta})$ and M is countable then $M \cap \omega_1 \in \omega_1$, and furthermore $M \cap \omega_1 \in C$ for all $C \in M$ with C club in ω_1 .
 - (b) The following are equivalent for $S \subseteq \omega_1$:
 - S is stationary.
 - There is a countable $M \prec (H_{\theta}, \in, <_{\theta})$ with $M \cap \omega_1 \in S$ and $S \in M$.
- (6) Assume that V = L. For each $\alpha < \omega_1$, let $f(\alpha)$ be the least $\beta > \alpha$ (if it exists) such that α is countable in L_{β} . Prove that:
 - (a) $f(\alpha)$ exists.
 - (b) $f(\alpha)$ is a successor ordinal.
 - (c) $f(\alpha) < \omega_1$.