SET THEORY BASIC EXAM: JANUARY 2015

Attempt four of the following six questions. All questions carry equal weight.

- (1) State the combinatorial principle \Diamond_{ω_1} . Prove that \Diamond_{ω_1} implies that $2^{\aleph_0} = \aleph_1$. Outline the main steps in the proof that if V = L then \Diamond_{ω_1} holds.
- (2) State the Reflection Theorem and outline the proof. Give the definition of the class HOD, and (assuming that it is a model of ZF) explain carefully why HOD is a model of AC.
- (3) Prove that if f is a function with domain \aleph_1 such that $f(\alpha)$ is a finite subset of \aleph_1 for each α , then there is an uncountable set $S \subseteq \aleph_1$ such that $\beta \notin f(\alpha)$ whenever α and β are distinct elements of S.
- (4) Prove that:
 - (a) If κ is singular strong limit, $2^{\kappa} = \kappa^{\mathrm{cf}(\kappa)}$.
 - (b) $\aleph_n^{\aleph_0} = \max\{\aleph_n, 2^{\aleph_0}\}$ for all finite *n*.
- (5) Fill in the details of the following argument for the existence of an \aleph_1 -Aronszajn tree.
 - (a) There is a sequence $\langle f_{\alpha} : \alpha < \omega_1 \rangle$ such that f_{α} is an injective map from α to ω for all α , and $\{\gamma < \alpha : f_{\alpha}(\gamma) \neq f_{\beta}(\gamma)\}$ is finite for all α and β with $\alpha < \beta$. Hint: Construct the f_{α} inductively and maintain the hypothesis that $rge(f_{\alpha})$ is coinfinite.
 - (b) If T is the set of x such that $dom(x) \in \omega_1$ and $\{\gamma \in dom(x) : f_{dom(x)}(\gamma) \neq x(\gamma)\}$ is finite, then T forms an ω_1 -Aronszajn tree under end-extension.
- (6) State and prove the Condensation Lemma. Use it to prove that if V = L then GCH holds.