Sample Basic Qualifying Exam - Section Probability

Time: 2 hrs

- 1. Recite precisely the following definitions/facts/theorems/lemmas:
 - (a) If \mathcal{A}_k is a sequence of σ -fields then the asymptotic σ -field is defined as ...
 - (b) Etemadi's strong law of large numbers
 - (c) Lindebergh's CLT
 - (d) Upcrossing inequality
 - (e) Give three equivalent characterizations of uniform integrability
 - (f) Cramer's Theorem (large deviations)
- 2. Give the statement and proof of **ONE** of the following theorems:
 - (a) optional stopping thm for martingales with a.s. finite stopping times
 - (b) classical CLT

Solve **TWO** out of the three following problems:

- 3. The distribution μ with distribution function $F_{\mu}(x) = e^{-e^{-x}}$ is one example of the so-called extremal distributions.
 - (a) Verify that F_{μ} is indeed a distribution function.
 - (b) Let M_n be the running maximum of i.i.d. exponential variables with parameter $\lambda = 1$ i.e., $M_n := \max(X_1, X_2, ..., X_n)$ and $\forall x \ge 0$, $\mathbf{P}[X_k > x] = e^{-x}$. Show first $\overline{\lim}_{n\to\infty}(X_n/\log(n)) \le 1$ a.s. and then $\lim_{n\to\infty} M_n/\log(n) \le 1$ a.s.
 - (c) In fact it can be seen that M_n is concentrated around $\log(n)$. Prove that in particular $M_n \log(n)$ converges weakly to μ as $n \to \infty$. *Hint:* Don't use Fourier transforms.
- 4. Let T, S be stoppint times w.r.t. a filtration $(\mathcal{F}_k)_{k\geq 0}$.
 - (a) What is the relation between $\sigma(T)$ and \mathcal{F}_T ? Explain.
 - (b) Consider a random walk on the integers starting at 0. Let T be the hitting time of $[10, \infty)$ and S be the hitting time of $[5, \infty)$. Is the event $\{S = 15\} \mathcal{F}_T$ -measurable? (prove or disprove)
 - (c) Show that $T \vee S$, the maximum of T and S, is a stopping time. Identify $\mathcal{F}_{T \vee S}$ in terms of \mathcal{F}_S and \mathcal{F}_T . (After guessing, prove that your guess is correct.)
- 5. Let X_1, X_2, \dots be independent RVs and $S_n = X_1 + \dots + X_n$. Suppose $P[X_k = -1] = P[X_k = 1] = (1 1/k^2)/2$ and $P[X_k = -k] = P[X_k = k] = (1/k^2)/2$.
 - (a) Determine the asymptotics of the variance of S_n .
 - (b) Based on this asymptotics conjecture (state but don't prove) a CLT for S_n .
 - (c) Check whether the Lindeberg-Feller condition is satisfied.
 - (d) Prove finally an appropriate CLT. Hint: Set $Y_k = \operatorname{sign}(X_k)$ and note that $\sum_k P[X_k \neq Y_k] < \infty$. Then use Borel Cantelli. Recall that if $Z_n \xrightarrow{w} Z$ and $C_n \to 0$ a.s., then $(Z_n + C_n) \xrightarrow{w} Z$.