Basic examination: probability

Aug 30th, 2024

The exam is 180 minutes long

Problem 1 (8pts). Give definitions of

- Product probability space
- Convergence of a sequence of random variables $(X_n)_{n=1}^{\infty}$ to a random variable X almost surely
- Discrete time martingale
- Moment generating function
- Stopping time

Problem 2 (8pts). State the following:

- Dynkin's π - λ theorem
- Jensen's inequality
- Kolmogorov's zero-one law
- The Tonelli (Fubini-Tonelli) theorem for non-negative functions on product spaces
- The Lévy continuity theorem

Problem 3 (14pts). Prove the following simplified version of Wald's second identity. For every n, let $S_n = y_1 + \cdots + y_n$, where y_1, y_2, \ldots are i.i.d with $\mathbb{E} y_1 = 0$ and $\operatorname{Var} y_1 = 1$. Further, let T be a stopping time (with respect to the filtration generated by y_1, y_2, \ldots) with $\mathbb{P}\{T < M\} = 1$ for some number $M < \infty$. Then $\mathbb{E}S_T^2 = \mathbb{E}T$.

Problem 4 (14pts). Let $(y_1, y_2, ...)$ be a sequence of *i.i.d* non-negative random variables, with $\mathbb{E} y_1 \leq 1$. (a) Show that the sequence

$$X_n = \prod_{i=1}^n y_i, \ n \ge 1; \quad X_0 := 1,$$

is a supermartingale with respect to the filtration generated by y_1, y_2, \ldots ; (b) Show that the sequence converges to zero almost surely unless $y_1 = 1$ a.s.

Problem 5 (14pts). Let X_1, X_2, \ldots be a sequence of mutually independent random variables of zero means and with the fourth moments uniformly bounded above by a constant $M < \infty$. Consider the sequence of averages

$$S_n := \frac{1}{n} \sum_{i=1}^n X_i, \quad n \ge 1.$$

Prove that the sequence $(S_n)_{n\geq 1}$ converges to zero a.s by estimating $\mathbb{E} S_n^4$, $n\geq 1$.

Problem 6 (14pts). Let X_1, X_2 be *i.i.d* standard Gaussian variables. Is the difference $|X_1| - |X_2|$ a Gaussian variable? Hint: It may be helpful to recall that the characteristic function of a Gaussian variable with mean μ and variance σ^2 equals $\exp(it\mu - \frac{1}{2}\sigma^2 t^2)$.

Problem 7 (14pts). Let $X = (X_1, X_2, X_3)$ be a random vector distributed on the unit Euclidean sphere S^2 according to the normalized surface area measure. Compute the probability density function of X_3^2 .

Problem 8 (14pts). Let X be a non-negative random variable, and assume that for every non-negative random variable Y with $\mathbb{E}Y < \infty$ (whether independent from X or not), we have $\mathbb{E}XY < \infty$. Prove that X is uniformly bounded, that is, there is a number $M < \infty$ such that $\mathbb{P}\{X > M\} = 0$.