# Basic examination: probability 

September 6th, 2023

## The exam is 180 minutes long

Problem 1 (10pts). Give definitions of

- Product probability measure for two probability spaces $\left(\Omega_{1}, \Sigma_{1}, \mathbb{P}_{1}\right)$ and $\left(\Omega_{2}, \Sigma_{2}, \mathbb{P}_{2}\right)$
- Characteristic function of a random vector in $\mathbb{R}^{n}$
- Weak convergence of a sequence of random variables $\left(X_{n}\right)_{n=1}^{\infty}$ to a random variable $X$
- Discrete time martingale
- Mutual independence for a collection of sigma-fields

Problem 2 (15pts). State the following:

- The dominated convergence theorem
- Jensen's inequality
- The Borel-Cantelli lemmas (first and second)
- The strong law of large numbers for a sequence of i.i.d random variables

Problem 3 (15pts). Prove the following concentration inequality of Azuma. Let $\left(\mathcal{F}_{i}\right)_{i=0}^{N}$ be a finite filtration on a probability space $(\Omega, \Sigma, \mathbb{P})$. Further, let $\left(X_{i}\right)_{i=0}^{N}$ be a martingale with respect to $\left(\mathcal{F}_{i}\right)_{i=0}^{N}$, and for each $1 \leq i \leq N$, set

$$
d_{i}:=\left\|X_{i}-X_{i-1}\right\|_{L_{\infty}}:=\sup \left\{t \geq 0: \mathbb{P}\left\{\left|X_{i}-X_{i-1}\right| \geq t\right\}>0\right\} .
$$

Then for every $t>0$ we have

$$
\mathbb{P}\left\{\left|X_{N}-X_{0}\right| \geq t\right\} \leq 2 \exp \left(-\frac{t^{2}}{C \sum_{i=1}^{N} d_{i}^{2}}\right),
$$

where $C>0$ is a universal constant.

Problem 4 (15pts). Let $X_{1}, X_{2}, \ldots$ be a sequence of independent identically distributed mean zero random variables such that for some number $M>0$, we have $\mathbb{P}\left\{\left|X_{i}\right| \geq M\right\}=0, i=1,2, \ldots$. Apply Lindeberg's replacement method to prove that the sequence of random variables

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}
$$

converges in distribution to Gaussian random variable of mean zero and variance equal to $\mathbb{E} X_{1}^{2}$ (the condition that the variables $X_{i}$ are uniformly bounded is added here to simplify the proof).

Problem 5 (15pts). Let $X_{1}, X_{2}, \ldots$ be a sequence of i.i.d random variables, each variable uniformly distributed on $[0,1]$. Define events $\mathcal{B}_{n}:=\left\{X_{n}>\max _{1 \leq i \leq n-1} X_{i}\right\}, n \geq 2$.

- Prove that $\mathbb{P}\left(\mathcal{B}_{n}\right)=1 / n$ for every $n \geq 2$ (Hint: note that for every fixed permutation $\pi$ of $\{1,2, \ldots, n\}$, the sequences $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and $\left(X_{\pi(1)}, X_{\pi(2)}, \ldots, X_{\pi(n)}\right)$ are equidistributed).
- Prove that the events $\mathcal{B}_{n}, n \geq 2$, are pairwise independent (consider $\mathbb{P}\left(\mathcal{B}_{m} \mid \mathcal{B}_{n}\right)$ for $m<n$ ).
- Apply the formula for the variance of a sum of pairwise independent variables and the Markov (Chebyshev) inequality to conclude that the sequence of random variables

$$
\frac{1}{\ln (n)} \sum_{i=2}^{n} \mathbf{1}_{\mathcal{B}_{i}}, \quad n \geq 2
$$

converges to one in probability. Here, $\mathbf{1}_{\mathcal{B}_{i}}$ is the indicator of the event $\mathcal{B}_{i}$.

Problem 6 (15pts). Let $\left(n_{i}\right)_{i=1}^{\infty}$ be a sequence of positive integers with $\lim _{i} n_{i}=\infty$. Further, for each $i \geq 1$ let $X_{i 1}, X_{i 2}, \ldots, X_{i n_{i}}$ be mutually independent Bernoulli random variables, with $\mathbb{P}\left\{X_{i j}=1\right\}=p_{i j}, 1 \leq j \leq n_{i}$.

- Write down a formula for the characteristic functions of the random variables

$$
\frac{\sum_{j=1}^{n_{i}} X_{i j}}{\sum_{j=1}^{n_{i}} p_{i j}}, \quad i \geq 1
$$

- Apply the Lévy continuity theorem for the characteristic functions to prove that under the assumption $\lim _{i \rightarrow \infty} \sum_{j=1}^{n_{i}} p_{i j}=+\infty$, the sequence

$$
\frac{\sum_{j=1}^{n_{i}} X_{i j}}{\sum_{j=1}^{n_{i}} p_{i j}}, \quad i \geq 1,
$$

converges to one in probability.
(You may need the approximation formulas $\sin (\varepsilon)=\varepsilon+o(\varepsilon), \cos (\varepsilon)=1+O\left(\varepsilon^{2}\right), 1+\varepsilon=$ $\exp (\varepsilon+o(\varepsilon)))$.

Problem 7 (15pts). Let $b_{1}, b_{2}, \ldots$ be a sequence of mutually independent Bernoulli(1/2) random variables. Define variables $X_{1}, X_{2}, \ldots$ inductively as follows:

$$
X_{1}:=1 ; \quad X_{k}:=\left\{\begin{array}{ll}
2 X_{k-1}, & \text { if } b_{k}=1 \\
1, & \text { otherwise }
\end{array} \quad k \geq 2\right.
$$

Does the sequence

$$
\frac{X_{k}}{k^{100}}, \quad k \geq 1
$$

converge almost surely to a non-random limit? Justify.

