2 Sep 2022

Basic examination: Probability

180 min.

^{20pts} **1.** State the following definitions, theorems and provide full proofs (if asked). Be precise.

a) The Borel-Cantelli lemmas with proofs.

b) Gaussian random vector in \mathbb{R}^n , show it has independent components if and only if they are uncorrelated.

c) Lindeberg's central limit theorem in \mathbb{R} .

d) The characteristic function ϕ_X of a random variable X. Show that $\phi''_X(0)$ exists if and only if $\mathbb{E}X^2 < \infty$. Lévy's continuity theorem.

e) A martingale sequence, Doob's decomposition, the quadratic variation process.

^{16pts} **2.** Let X_1, X_2, \ldots be integrable random variables with the same distribution. Let $Y_k = X_k \mathbf{1}_{|X_k| \le k}$ for $k \ge 1$.

(a) Suppose that $\frac{Y_1+\dots+Y_n}{n}$ converges a.s. to some $a \in \mathbb{R}$. Show that then $\frac{X_1+\dots+X_n}{n}$ also converges a.s. to a.

(b) Show that $\sum_{k=1}^{\infty} \frac{1}{k^2} \operatorname{Var}(Y_k) < \infty$.

 $_{16 pts}$ 3. Show that for a random variable X with characteristic function ϕ and every t > 0, we have

$$\mathbb{P}(|X| > 2/t) \le \frac{1}{t} \int_{-t}^{t} [1 - \phi(x)] \mathrm{d}x.$$

- ^{16pts} **4.** Let $(a_k)_{k\geq 1}$ be a bounded sequence in \mathbb{R} . Let X_1, X_2, \ldots be independent random variables with $\mathbb{P}(X_k = \pm a_k) = \frac{1}{2}$ for $k \geq 1$. Show that $Y_n = \frac{\sum_{k=1}^n X_k}{\sqrt{\operatorname{Var}(\sum_{k=1}^n X_k)}}$ converges in distribution.
- ^{16pts} 5. Let $M = (M_n)_{n\geq 0}$ be a martingale with $M_0 = 0$ such that $\mathbb{E}M_n^2 < \infty$ for each n. Show that on the event $\{\langle M \rangle_{\infty} = +\infty\}$, we have $\frac{M_n}{\langle M \rangle_n} \to 0$.
- ¹⁶pts **6.** Let U_1, U_2, \ldots be i.i.d. random variables uniform on [-1, 3]. We define $S_n = U_1 + \cdots + U_n$ and $\tau = \inf\{n \ge 1, U_n \ge 0\}$. Find $\mathbb{E}S_{\tau}$ and $\mathbb{E}(S_{\tau} \tau)^2$. (If you choose to apply Wald's identities, please state them precisely along with proofs.)