2 Sep 2022

Basic examination: Probability

180 min.

20pts 1. State the following definitions, theorems and provide full proofs (if asked). Be precise.
 a) The Borel-Cantelli lemmas with proofs.
 b) Gaussian random vector in \(\mathbb{R}^n \), show it has independent components if and only if they are uncorrelated.
 c) Lindeberg’s central limit theorem in \(\mathbb{R} \).
 d) The characteristic function \(\phi_X \) of a random variable \(X \). Show that \(\phi_X''(0) \) exists if and only if \(E[X^2] < \infty \). Lévy’s continuity theorem.
 e) A martingale sequence, Doob’s decomposition, the quadratic variation process.

16pts 2. Let \(X_1, X_2, \ldots \) be integrable random variables with the same distribution. Let \(Y_k = X_k 1_{|X_k| \leq k} \) for \(k \geq 1 \).
 a) Suppose that \(\frac{Y_1 + \cdots + Y_n}{n} \) converges a.s. to some \(a \in \mathbb{R} \). Show that then \(\frac{X_1 + \cdots + X_n}{n} \) also converges a.s. to \(a \).
 b) Show that \(\sum_{k=1}^{\infty} \frac{1}{k^2} \text{Var}(Y_k) < \infty \).

16pts 3. Show that for a random variable \(X \) with characteristic function \(\phi \) and every \(t > 0 \), we have
\[
P(|X| > 2/t) \leq \frac{1}{t} \int_{-t}^{t} [1 - \phi(x)] \, dx.
\]

16pts 4. Let \((a_k)_{k \geq 1} \) be a bounded sequence in \(\mathbb{R} \). Let \(X_1, X_2, \ldots \) be independent random variables with \(P(X_k = \pm a_k) = \frac{1}{2} \) for \(k \geq 1 \). Show that \(Y_n = \frac{\sum_{k=1}^{n} X_k}{\sqrt{\text{Var}(\sum_{k=1}^{n} X_k)}} \) converges in distribution.

16pts 5. Let \(M = (M_n)_{n \geq 0} \) be a martingale with \(M_0 = 0 \) such that \(E[M_n^2] < \infty \) for each \(n \). Show that on the event \(\{ |M|_\infty = +\infty \} \), we have \(\frac{M_n}{(M_0^2)} \to 0 \).

16pts 6. Let \(U_1, U_2, \ldots \) be i.i.d. random variables uniform on \([-1, 3]\). We define \(S_n = U_1 + \cdots + U_n \) and \(\tau = \inf \{ n \geq 1, U_n \geq 0 \} \). Find \(E[S_\tau] \) and \(E[(S_\tau - \tau)^2] \). (If you choose to apply Wald’s identities, please state them precisely along with proofs.)