1. State the following definitions, theorems and provide full proofs (if asked). Be precise.
 a) a random variable, the law (distribution) of a random variable, the cumulative distribution function of a random variable,
 b) \(\pi \)-system, \(\lambda \)-system, Dynkin’s lemma,
 c) show that the cumulative distribution function determines the law,
 d) convergence in distribution, the (vanilla) central limit theorem,
 e) a martingale sequence, Doob’s convergence theorem.

2. Let \(X \) and \(Y \) be independent standard Gaussian random variables. Let \(\theta \in [0, 2\pi) \).
 a) What is the density of the random vector \(V \)?
 b) Are the components of \(V \) independent?
 c) Find \(\mathbb{P}(X < 100Y) \) and \(\mathbb{E}[(\cos \theta)X + (\sin \theta)Y] \).
 d) Find \(\mathbb{E}[(\cos \theta)X + (\sin \theta)Y]^{10} \).

3. Suppose that a random variable \(X \) with variance one has the following property: \(\frac{X + X'}{\sqrt{2}} \) has the same distribution as \(X \), where \(X' \) is an independent copy of \(X \). Show that \(X \) is standard Gaussian.

4. Let \((X_n)_{n=0}^{\infty} \) be a martingale with \(X_0 = 0 \) and bounded increments: there is a constant \(C > 0 \) such that for every \(n \), \(|X_n - X_{n-1}| \leq C \). Let \(u > 0 \) and \(\tau = \inf\{n \geq 0, X_n > u\} \).
 (i) Show that \(\tau \) is a stopping time and \(X_{\tau \wedge n} \leq u + C \) for every \(n \).
 (ii) Show that on the event \(\{\tau = +\infty\} \), we have “\(\lim X_n \) exists and is finite”.
 (iii) Show the following dichotomy
 \(\mathbb{P}(\{\lim \inf X_n = -\infty, \lim \sup X_n = +\infty\} \cup \{\lim X_n \text{ exists and is finite}\}) = 1. \)

5. Let \((X_k)_{k=0}^{n}, (Y_k)_{k=0}^{n} \) be two martingale sequences (adapted to the same filtration) such that \(\mathbb{E}X_n^2 < \infty, \mathbb{E}Y_n^2 < \infty \).
 (i) Show that \(\mathbb{E}X_k^2 < \infty, \mathbb{E}Y_k^2 < \infty \) for each \(0 \leq k \leq n \).
 (ii) Show that
 \[\mathbb{E}X_nY_n - \mathbb{E}X_n\mathbb{E}Y_n = \sum_{k=1}^{n} \mathbb{E}(X_k - X_{k-1})(Y_k - Y_{k-1}). \]

6. Let \((X_{n,k})_{n \geq 1, 1 \leq k \leq n} \) be a family of Bernoulli random variables such that for every \(n \geq 1 \), the variables \(X_{n,1}, \ldots, X_{n,n} \) are independent and \(\mathbb{E}\sum_{k=1}^{n} X_{n,k} \xrightarrow{n \to \infty} \lambda \) for some \(\lambda \in (0, \infty) \) and \(\max_{1 \leq k \leq n} \mathbb{E}X_{n,k} \xrightarrow{n \to \infty} 0. \) Show that \(X_{n,1} + \cdots + X_{n,n} \) converges in distribution to a Poisson random variable with parameter \(\lambda \).

7. Let \(X = (X_1, \ldots, X_n) \) be a random vector uniform in the cube \([-1, 1]^n\). Show that for every unit vector \((a_1, \ldots, a_n) \) in \(\mathbb{R}^n \) and every \(t > 0 \), we have
 \[\mathbb{P}\left(\left| \sum_{j=1}^{n} a_j X_j \right| > t \right) \leq 2 \exp\left(-\frac{3}{2} t^2 \right). \]
 Show that the constant \(\frac{3}{2} \) in the exponent is best possible, that is the statement fails if \(\frac{3}{2} \) is replaced with any \(c > \frac{3}{2} \).