27 Jan 2022

Basic examination: Probability

<u>180 min</u>.

¹⁶pts **1.** State the following definitions, theorems and provide full proofs (if asked). Be precise.

a) a random variable, the law (distribution) of a random variable, the cumulative distribution function of a random variable,

- b) π -system, λ -system, Dynkin's lemma,
- c) show that the cumulative distribution function determines the law,
- d) convergence in distribution, the (vanilla) central limit theorem,
- e) a martingale sequence, Doob's convergence theorem.

 $_{10 \text{pts}}$ 2. Let X and Y be independent standard Gaussian random variables. Let $\theta \in [0, 2\pi)$.

- a) What is the density of the random vector $V = \begin{bmatrix} (\cos \theta) X + (\sin \theta) Y \\ -(\sin \theta) X + (\cos \theta) Y \end{bmatrix}$?
- b) Are the components of V independent?
- c) Find $\mathbb{P}(X < 100Y)$ and $\mathbb{E}[((\cos \theta)X + (\sin \theta)Y)^{10}]$.
- ^{16pts} **3.** Suppose that a random variable X with variance one has the following property: $\frac{X+X'}{\sqrt{2}}$ has the same distribution as X, where X' is an independent copy of X. Show that X is standard Gaussian.
- ^{16pts} 4. Let $(X_n)_{n=0}^{\infty}$ be a martingale with $X_0 = 0$ and bounded increments: there is a constant C > 0such that for every n, $|X_n - X_{n-1}| \le C$. Let u > 0 and $\tau = \inf\{n \ge 0, X_n > u\}$.
 - (i) Show that τ is a stopping time and $X_{\tau \wedge n} \leq u + C$ for every n.
 - (ii) Show that on the event $\{\tau = +\infty\}$, we have " $\lim X_n$ exists and is finite".
 - (iii) Show the following dichotomy

$$\mathbb{P}\Big(\{\liminf X_n = -\infty, \limsup X_n = +\infty\} \cup \{\lim X_n \text{ exists and is finite}\}\Big) = 1$$

- ^{10pts} 5. Let $(X_k)_{k=0}^n$, $(Y_k)_{k=0}^n$ be two martingale sequences (adapted to the same filtration) such that $\mathbb{E}X_n^2 < \infty$, $\mathbb{E}Y_n^2 < \infty$.
 - (i) Show that $\mathbb{E}X_k^2 < \infty$, $\mathbb{E}Y_k^2 < \infty$ for each $0 \le k \le n$.
 - (ii) Show that

$$\mathbb{E}X_n Y_n - \mathbb{E}X_0 Y_0 = \sum_{k=1}^n \mathbb{E}\Big[(X_k - X_{k-1})(Y_k - Y_{k-1}) \Big].$$

- ¹⁶pts **6.** Let $\{X_{n,k}\}_{n\geq 1,1\leq k\leq n}$ be a family of Bernoulli random variables such that for every $n\geq 1$, the variables $X_{n,1},\ldots,X_{n,n}$ are independent and $\mathbb{E}\sum_{k=1}^{n}X_{n,k}\xrightarrow[n\to\infty]{}\lambda$ for some $\lambda\in(0,\infty)$ and $\max_{1\leq k\leq n}\mathbb{E}X_{n,k}\xrightarrow[n\to\infty]{}0$. Show that $X_{n,1}+\cdots+X_{n,n}$ converges in distribution to a Poisson random variable with parameter λ .
- ^{16pts} 7. Let $X = (X_1, \ldots, X_n)$ be a random vector uniform in the cube $[-1, 1]^n$. Show that for every unit vector (a_1, \ldots, a_n) in \mathbb{R}^n and every t > 0, we have

$$\mathbb{P}\left(\left|\sum_{j=1}^{n} a_j X_j\right| > t\right) \le 2 \exp\left\{-\frac{3}{2}t^2\right\}.$$

Show that the constant $\frac{3}{2}$ in the exponent is best possible, that is the statement fails if $\frac{3}{2}$ is replaced with any $c > \frac{3}{2}$.