Basic examination: Probability

180 min.
pts 1. State the following definitions, theorems and provide full proofs (if asked). Be precise.
a) a random variable, the law (distribution) of a random variable, the cumulative distribution function of a random variable,
b) π-system, λ-system, Dynkin's lemma,
c) show that the cumulative distribution function determines the law,
d) convergence in distribution, the (vanilla) central limit theorem,
e) a martingale sequence, Doob's convergence theorem.
pts 2. Let X and Y be independent standard Gaussian random variables. Let $\theta \in[0,2 \pi)$.
a) What is the density of the random vector $V=\left[\begin{array}{c}(\cos \theta) X+(\sin \theta) Y \\ -(\sin \theta) X+(\cos \theta) Y\end{array}\right]$?
b) Are the components of V independent?
c) Find $\mathbb{P}(X<100 Y)$ and $\mathbb{E}\left[((\cos \theta) X+(\sin \theta) Y)^{10}\right]$.
3. Suppose that a random variable X with variance one has the following property: $\frac{X+X^{\prime}}{\sqrt{2}}$ has the same distribution as X, where X^{\prime} is an independent copy of X. Show that X is standard Gaussian.

16pts 4. Let $\left(X_{n}\right)_{n=0}^{\infty}$ be a martingale with $X_{0}=0$ and bounded increments: there is a constant $C>0$ such that for every $n,\left|X_{n}-X_{n-1}\right| \leq C$. Let $u>0$ and $\tau=\inf \left\{n \geq 0, X_{n}>u\right\}$.
(i) Show that τ is a stopping time and $X_{\tau \wedge n} \leq u+C$ for every n.
(ii) Show that on the event $\{\tau=+\infty\}$, we have " $\lim X_{n}$ exists and is finite".
(iii) Show the following dichotomy

$$
\mathbb{P}\left(\left\{\lim \inf X_{n}=-\infty, \lim \sup X_{n}=+\infty\right\} \cup\left\{\lim X_{n} \text { exists and is finite }\right\}\right)=1
$$

pts 5. Let $\left(X_{k}\right)_{k=0}^{n},\left(Y_{k}\right)_{k=0}^{n}$ be two martingale sequences (adapted to the same filtration) such that $\mathbb{E} X_{n}^{2}<\infty, \mathbb{E} Y_{n}^{2}<\infty$.
(i) Show that $\mathbb{E} X_{k}^{2}<\infty, \mathbb{E} Y_{k}^{2}<\infty$ for each $0 \leq k \leq n$.
(ii) Show that

$$
\mathbb{E} X_{n} Y_{n}-\mathbb{E} X_{0} Y_{0}=\sum_{k=1}^{n} \mathbb{E}\left[\left(X_{k}-X_{k-1}\right)\left(Y_{k}-Y_{k-1}\right)\right]
$$

6. Let $\left\{X_{n, k}\right\}_{n \geq 1,1 \leq k \leq n}$ be a family of Bernoulli random variables such that for every $n \geq 1$, the variables $X_{n, 1}, \ldots, X_{n, n}$ are independent and $\mathbb{E} \sum_{k=1}^{n} X_{n, k} \xrightarrow[n \rightarrow \infty]{ } \lambda$ for some $\lambda \in(0, \infty)$ and $\max _{1 \leq k \leq n} \mathbb{E} X_{n, k} \underset{n \rightarrow \infty}{ } 0$. Show that $X_{n, 1}+\cdots+X_{n, n}$ converges in distribution to a Poisson random variable with parameter λ.
16pts 7. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random vector uniform in the cube $[-1,1]^{n}$. Show that for every unit vector $\left(a_{1}, \ldots, a_{n}\right)$ in \mathbb{R}^{n} and every $t>0$, we have

$$
\mathbb{P}\left(\left|\sum_{j=1}^{n} a_{j} X_{j}\right|>t\right) \leq 2 \exp \left\{-\frac{3}{2} t^{2}\right\}
$$

Show that the constant $\frac{3}{2}$ in the exponent is best possible, that is the statement fails if $\frac{3}{2}$ is replaced with any $c>\frac{3}{2}$.

