Basic examination: Probability

<u>180 min</u>.

^{16pts} **1.** State the following definitions and theorems. Be precise.

a) a discrete random variable, a continuous random variable, the cumulative distribution function (CDF),

- b) the characteristic function of a random variable, Lévy's continuity theorem
- c) a.s. convergence, the strong law of large numbers
- d) Doob's convergence theorem, the law of the iterated logarithm (for random signs)
- e) is there an atom-less random variable which is *not* continuous but whose CDF is continuous?

 $_{16\text{pts}}$ 2. Let $(X_n)_{n>0}$ be a submartingale. Show that for every t > 0 and positive integer n, we have

$$\mathbb{P}\left(\max_{0 \le k \le n} X_k \ge t\right) \le \frac{1}{t} \mathbb{E} X_n^+$$

Let p > 1. If additionally (X_n) is nonnegative, show that

$$\left(\mathbb{E}\max_{0\leq k\leq n} X_k^p\right)^{1/p} \leq \frac{p}{p-1} \left(\mathbb{E} X_n^p\right)^{1/p}.$$

^{10pts} **3.** Show that there is a positive constant δ such that for every random variable X and every interval I in \mathbb{R} of length at most δ , we have

$$\mathbb{P}(X \in I) \le 2 \int_{|t| \le 1} |\phi_X(t)| \mathrm{d}t,$$

where ϕ_X is the characteristic function of X.

In the next two questions $\varepsilon_1, \varepsilon_2, \ldots$ are i.i.d. symmetric random signs, $\mathbb{P}(\varepsilon_j = \pm 1) = \frac{1}{2}$.

^{16pts} **4.** Let $\alpha \in \mathbb{R}$ and set

$$Z_n = \exp\left\{-n\alpha^2/2 + \alpha \sum_{j=1}^n \varepsilon_j\right\}.$$

Show that $(Z_n)_{n\geq 1}$ is a supermartingale. Does it converge a.s.? Does it converge in L_1 ? If yes, find the limit.

- ¹⁶_{pts} **5.** Let X and Y be independent random variables. Show that if X is continuous, then X + Y is also continuous. Let $0 < \lambda < \frac{1}{2}$. Show that $\sum_{k=1}^{\infty} \lambda^k \varepsilon_k$ converges a.s. to a random variable X which is *singular*, that is $\mathbb{P}(X = a) = 0$ for every $a \in \mathbb{R}$ and there is a set S of Lebesgue measure zero with $\mathbb{P}(X \in S) = 1$. Are there independent random variables U and V such that each is singular, but U + V is continuous?
- ¹⁶_{pts} **6.** Let G be a Gaussian vector in \mathbb{R}^n with $\mathbb{E}G = 0$. Show that $\mathbb{P}\left(\|G\| \ge \sqrt{\mathbb{E}\|G\|^2}\right) > c_0$, for some universal constant $c_0 > 0$, where $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^n .
- 10pts 7. Let X be a square integrable continuous random variable with density f on \mathbb{R} . Show that

$$\operatorname{Var}(X) \sup_{x \in \mathbb{R}} |f(x)|^2 \ge \frac{1}{12}$$

Is the constant $\frac{1}{12}$ in this inequality best possible?