4 Feb 2021

Basic examination: Probability

<u>180 min</u>.

 $_{^{16pts}}$ 1. State the following definitions and theorems. Be precise.

- a) σ -algebra, probability measure,
- b) first and second Borel-Cantelli lemmas,
- c) Fatou's lemma, Lebesgue's dominated and monotone convergence theorems,
- d) conditional expectation, matringale sequence $(X_n)_{n\geq 0}$.
- ¹⁰pts **2.** State and prove the "vanilla" central limit theorem (i.e. for sums of i.i.d. random variables).
- ¹⁶_{pts} **3.** Show that if Y_1, Y_2, \ldots is a sequence of random variables such that for every $\varepsilon > 0$, we have $\sum_{n=1}^{\infty} \mathbb{P}(|Y_n| > \varepsilon) < \infty$, then Y_n converges to 0 a.s. Let X_1, X_2, \ldots be independent random variables such that each one has mean zero and there is a constant C such that $\mathbb{E}|X_n|^4 \leq C$ for every n. Show that $\frac{1}{n}(X_1 + \cdots + X_n)$ converges to 0 a.s.
- ¹⁶_{pts} **4.** Let $\varepsilon_1, \varepsilon_2, \ldots$ be i.i.d. symmetric random signs, $\mathbb{P}(\varepsilon_j = \pm 1) = \frac{1}{2}$. Let $X_0 = 0, X_n = \varepsilon_1 + \cdots + \varepsilon_n$. Let $\tau = \inf\{n \ge 1, X_n = 1\}$, the first time the symmetric random walk (X_n) starting at 0 visits 1.
 - a) Show that τ is a stopping time.
 - b) Fix $\lambda > 0$ and let $M_n = (\cosh \lambda)^{-n} e^{\lambda X_n}$, $n \ge 0$. Show that (M_n) is a martingale.
 - c) Considering $M_{\tau \wedge n}$ and using Doob's optional sampling lemma, or otherwise, show that $\mathbb{E}(\cosh \lambda)^{-\tau} = e^{-\lambda}$.
 - d) Deduce that $\mathbb{P}(\tau < \infty) = 1$.
 - e) Deduce that $\mathbb{P}(\tau = 2k 1) = (-1)^{k+1} \binom{1/2}{k}, k \ge 1.$
- ^{16pts} 5. Let G be a Gaussian vector in \mathbb{R}^n with $\mathbb{E}G = 0$. Show that $\mathbb{P}\left(\|G\| \ge \sqrt{\mathbb{E}\|G\|^2}\right) > c_0$, for some universal constant $c_0 > 0$, where $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^n .
- ¹⁶pts **6.** Show that if Y is a mean 0 random variable with $|Y| \leq a$, then $\mathbb{E}e^{\lambda Y} \leq e^{\lambda^2 a^2/2}$ for every $\lambda \in \mathbb{R}$ (hint: for a convex function f, $f(y) \leq \frac{a-y}{2a}f(-a) + \frac{a+y}{2a}f(a)$, $|y| \leq a$). Let $(M_n)_{n\geq 0}$ be a martingale with $M_0 = 0$ and $|M_k M_{k-1}| \leq a_k$ for every $k \geq 1$ for some positive constants a_1, a_2, \ldots Show that for every $n \geq 1$ and t > 0,

$$\mathbb{P}\left(\max_{k\leq n} M_k \geq t\right) \leq \exp\left\{-\frac{t^2}{2\sum_{k=1}^n a_k^2}\right\}.$$

^{10pts} 7. Let X_1, \ldots, X_n be independent symmetric random variables $(-X_j)$ has the same distribution as X_j such that $\mathbb{P}(X_j = 0) = 0$ for every j. Show that for every t > 0,

$$\mathbb{P}\left(\frac{X_1 + \dots + X_n}{\sqrt{X_1^2 + \dots + X_n^2}} \ge t\right) \le e^{-t^2/2}.$$