Basic examination: Probability

180 min .
${ }^{16 \mathrm{p} t s}$ 1. State the following definitions and theorems. Be precise.
a) σ-algebra, probability measure,
b) first and second Borel-Cantelli lemmas,
c) Fatou's lemma, Lebesgue's dominated and monotone convergence theorems,
d) conditional expectation, matringale sequence $\left(X_{n}\right)_{n \geq 0}$.
2. State and prove the "vanilla" central limit theorem (i.e. for sums of i.i.d. random variables).
3. Show that if Y_{1}, Y_{2}, \ldots is a sequence of random variables such that for every $\varepsilon>0$, we have $\sum_{n=1}^{\infty} \mathbb{P}\left(\left|Y_{n}\right|>\varepsilon\right)<\infty$, then Y_{n} converges to 0 a.s. Let X_{1}, X_{2}, \ldots be independent random variables such that each one has mean zero and there is a constant C such that $\mathbb{E}\left|X_{n}\right|^{4} \leq C$ for every n. Show that $\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)$ converges to 0 a.s.
${ }_{16 \mathrm{pts}} 4$. Let $\varepsilon_{1}, \varepsilon_{2}, \ldots$ be i.i.d. symmetric random signs, $\mathbb{P}\left(\varepsilon_{j}= \pm 1\right)=\frac{1}{2}$. Let $X_{0}=0, X_{n}=\varepsilon_{1}+\cdots+\varepsilon_{n}$. Let $\tau=\inf \left\{n \geq 1, X_{n}=1\right\}$, the first time the symmetric random walk $\left(X_{n}\right)$ starting at 0 visits 1.
a) Show that τ is a stopping time.
b) Fix $\lambda>0$ and let $M_{n}=(\cosh \lambda)^{-n} e^{\lambda X_{n}}, n \geq 0$. Show that $\left(M_{n}\right)$ is a martingale.
c) Considering $M_{\tau \wedge n}$ and using Doob's optional sampling lemma, or otherwise, show that $\mathbb{E}(\cosh \lambda)^{-\tau}=e^{-\lambda}$.
d) Deduce that $\mathbb{P}(\tau<\infty)=1$.
e) Deduce that $\mathbb{P}(\tau=2 k-1)=(-1)^{k+1}\binom{1 / 2}{k}, k \geq 1$.

16pts 5. Let G be a Gaussian vector in \mathbb{R}^{n} with $\mathbb{E} G=0$. Show that $\mathbb{P}\left(\|G\| \geq \sqrt{\mathbb{E}\|G\|^{2}}\right)>c_{0}$, for some universal constant $c_{0}>0$, where $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^{n}.
${ }^{16 \mathrm{pts}}$ 6. Show that if Y is a mean 0 random variable with $|Y| \leq a$, then $\mathbb{E} e^{\lambda Y} \leq e^{\lambda^{2} a^{2} / 2}$ for every $\lambda \in \mathbb{R}$ (hint: for a convex function $\left.f, f(y) \leq \frac{a-y}{2 a} f(-a)+\frac{a+y}{2 a} f(a),|y| \leq a\right)$. Let $\left(M_{n}\right)_{n \geq 0}$ be a martingale with $M_{0}=0$ and $\left|M_{k}-M_{k-1}\right| \leq a_{k}$ for every $k \geq 1$ for some positive constants a_{1}, a_{2}, \ldots. Show that for every $n \geq 1$ and $t>0$,

$$
\mathbb{P}\left(\max _{k \leq n} M_{k} \geq t\right) \leq \exp \left\{-\frac{t^{2}}{2 \sum_{k=1}^{n} a_{k}^{2}}\right\}
$$

7. Let X_{1}, \ldots, X_{n} be independent symmetric random variables ($-X_{j}$ has the same distribution as $\left.X_{j}\right)$ such that $\mathbb{P}\left(X_{j}=0\right)=0$ for every j. Show that for every $t>0$,

$$
\mathbb{P}\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{X_{1}^{2}+\cdots+X_{n}^{2}}} \geq t\right) \leq e^{-t^{2} / 2}
$$

