Basic examination: Probability

<u>180 min</u>.

^{16pts} 1. State the following definitions and theorems. Be precise.

- a) π -system, λ -system, Dynkin's lemma, an example of a π -system generating $\mathcal{B}(\mathbb{R}^n)$.
- b) independent family of σ -algebras, tail σ -algebra, Kolmogorov's 0-1 law
- c) convergence in probability, a.s., in L_p , in distribution
- d) standard Gaussian vector in \mathbb{R}^n , arbitrary Gaussian vector in \mathbb{R}^n , Lindeberg's central limit theorem (in \mathbb{R})

e) matringale sequence $(X_n)_{n\geq 0}$, Doob's maximal inequality in L_p , p > 1.

- _{spts} 2. State and prove the first and second Borel-Cantelli lemmas.
- ^{16pts} **3.** Let g_1, g_2, \ldots be i.i.d. standard Gaussian random variables. Let $(a_{ij})_{i < j}$ be in ℓ_2 , that is $\sum_{i < j} a_{ij}^2 < \infty$. Let $X_n = \frac{1}{n} \sum_{i=1}^n g_i^2 + \frac{1}{\sqrt{n}} \sum_{1 \le i < j \le n} a_{ij} g_i g_j$. Show that the sequence $(X_n)_{n \ge 1}$ converges to 1 a.s.
- 18pts 4. Let X be a random variable with characteristic function ϕ_X . Justify the following statements.
 - a) For every $a \in \mathbb{R}$, $\mathbb{P}(X = a) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-iat} \phi_X(t) dt$.
 - b) If Y is an independent copy of X, then $\mathbb{P}(X = Y) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |\phi_X(t)|^2 dt$.
 - c) $\mathbb{P}(X = Y) = \sum_{x \in \mathbb{R}} \mathbb{P}(X = x)^2$.
 - d) X has no atoms if and only if $\lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} |\phi_X(t)|^2 dt = 0.$
 - e) If $\lim_{t\to\infty} \phi_X(t) = 0$, then X has no atoms.
 - f) If X is continuous, then $\lim_{t\to\infty} \phi_X(t) = 0$.
- ¹⁶_{pts} **5.** Let X_1, X_2, \ldots be i.i.d. nonnegative random variables with mean 1 such that $\mathbb{P}(X_1 = 1) < 1$. Show that the sequence $(M_n)_{n \ge 1}, M_n = X_1 \cdot \ldots \cdot X_n$ converges a.s. Does it converge in L_1 ?

^{16pts} **6.** Let X, X_1, X_2, \ldots be i.i.d. random variables such that $\mathbb{E}e^{tX} < \infty$ for every $t \in \mathbb{R}$ and $\frac{\mathbb{E}X_1e^{tX}}{\mathbb{E}e^{tX}} \to \infty$ as $t \to +\infty$. Show that for every $a > \mathbb{E}X$, we have

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P} \left(X_1 + \dots + X_n \ge an \right) = -\sup_{t > 0} \left(ta - \log \mathbb{E} e^{tX} \right).$$

(Do not invoke Cramér's theorem here. The point of this question is to give a self-contained proof of it under the above simplifying assumptions.)

^{10pts} 7. Let z_1, \ldots, z_n be complex numbers. Prove that there exists a subset I of $\{1, \ldots, n\}$ such that $\left| \sum_{k \in I} z_k \right| \ge \frac{1}{\pi} \sum_{k=1}^n |z_k|.$