Basic Examination
 Probability
 Spring 2020

Time allowed: 180 minutes.

1. Recite precisely the following definitions/facts/theorems/lemmas:
(a) Give the definitions of the following convergences: (i) almost surely, (ii) in probability, (iii) in \mathcal{L}_{1}, (iv) weak ($=$ in distribution). Specify all relations between these convergences.
(b) Let $\left(X_{n}\right)$ be a nonnegative submartingale. Will it converge (i) almost surely, (ii) in probability, (iii) in \mathcal{L}_{1}, (iv) weakly to some (finite) random variable X_{∞} ? If needed, formulate additional (as sharp as possible) conditions on $\left(X_{n}\right)$ that yield these convergences.
(c) Kolmogorov's three-series theorem on convergence of sums of IRVs.
(d) Doob's maximal \mathcal{L}^{p} inequalities, $p>1$.
(e) Theorem on equivalence between weak convergence and convergence of characteristic functions.
2. Let $\left(X_{n}\right)$ be IID Gaussian RVs with mean 0 and variance 1 and $h=h(t)$ be some strictly increasing function on $(0, \infty)$. Obtain conditions on $h=(h(t))$ so that

$$
\limsup _{n \rightarrow \infty} \frac{X_{n}}{h(n)}=1, \quad \text { (a.s.). }
$$

3. Let $\left(M_{n}\right)$ be a strictly positive UI martingale in the form:

$$
M_{n}=\prod_{k=1}^{n} X_{k}, \quad M_{0}=1,
$$

where $\left(X_{n}\right)$ are IRVs. Find all $p>0$ such that $\mathbb{E}\left(\max _{n} M_{n}^{p}\right)<\infty$.
4. Let $\left(X_{n}\right)$ be bounded IID RVs with mean $\mu=\mathbb{E}\left(X_{1}\right) \neq 0$ and variance $\sigma^{2}=$ $\mathbb{E}\left(\left(X_{1}-\mu\right)^{2}\right)>0$. Obtain necessary and sufficient conditions on the sequence of real numbers $\left(a_{n}\right)$ that are equivalent to the weak convergence of $\sum_{n} a_{n} X_{n}$.
5. Let $\left(X_{n}\right)$ be Exp IID RVs, that is, their density function has the form:

$$
f(t)=e^{-t}, \quad t \geq 0
$$

Let $S_{n}=X_{1}+\cdots+X_{n}$ and $Y_{n}=\mathbb{E}\left(X_{n} \left\lvert\, S_{n}>\frac{n}{2}\right.\right)$ be the conditional expectation of X_{n} given the event $\left\{S_{n}>\frac{n}{2}\right\}$. Will the sequence $\left(Y_{n}\right)$ converge? It yes, then compute the limit.
6. Let $\left(X_{n}\right)$ be non-negative IID RVs. Suppose that

$$
\frac{X_{1}+\ldots X_{n}}{n} \rightarrow \mu<\infty, \quad n \rightarrow \infty, \quad \text { (a.s.). }
$$

Can we assert that $\mathbb{E}\left(X_{1}\right)=\mu$?
Remark. Be careful. We are not given that $\mathbb{E}\left(X_{1}\right)<\infty$.
7. Let $\left(X_{n, m}\right)$ be IID random variables with values in non-negative integers such that

$$
\mu=\mathbb{E}\left[X_{1,1}\right]>1 \quad \text { and } \quad \sigma^{2}=\mathbb{E}\left[\left(X_{1,1}-\mu\right)^{2}\right]<\infty .
$$

Define random variables $\left(Z_{n}\right)$, recursively, as

$$
\begin{aligned}
Z_{0} & =1, \\
Z_{n+1} & =\sum_{m=1}^{Z_{n}} X_{n+1, m} .
\end{aligned}
$$

Show that

$$
M_{n}=\frac{Z_{n}}{\mu^{n}} \rightarrow M_{\infty} \text { in } \mathcal{L}_{2}
$$

and compute the first and second moments of M_{∞}.
8. Let $\left(X_{n}\right)$ be a symmetric random walk on integers with $X_{0}=0$. Let $a \in \mathbb{Z}_{+}$. Among all stopping times τ with $\mathbb{E}[\tau] \leq a^{2}$, find the one that maximizes $\mathbb{E}\left(\left|X_{\tau}\right|\right)$.

