DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

Basic Examination Probability Fall 2019

Time allowed: 180 minutes.

- 1. Recite precisely the following definitions/facts/theorems/lemmas:
 - (a) π -systems and uniqueness of extensions of σ -finite measures (Dynkin's lemma).
 - (b) Convergence theorems (Monotone, Fatou, Dominated, Bounded).
 - (c) Doob's Upcrossing Lemma and "Forward" Convergence Theorem for submartingales.
 - (d) Doob's maximal \mathcal{L}^p inequalities, p > 1.
 - (e) Theorem on equivalence between weak convergence and convergence of characteristic functions.
- 2. Write the proof of Kolmogorov's 0-1 law using Martingale Convergence Theorem.
- 3. Let (M_n) be a martingale with $M_0 = 0$ and suppose that

$$|M_n - M_{n+1}| \le c_n,$$

for some $c_n \ge 0$. Prove that

$$\mathbb{P}(\sup_{n} M_n \ge x) \le e^{-\frac{x^2}{2a^2}}, \quad x > 0,$$

where

$$a^2 = \sum_n c_n^2$$

4. Let (X_n) be IID Gaussian RVs with mean 0 and variance 1 and denote

$$S_n = X_1 + \dots + X_n.$$

Compute $\mathbb{E}(X_n | S_n > 0)$, the conditional expectation of X_n given the event $\{S_n > 0\}$.

5. Let (X_n) be Cauchy IID RVs, that is, their density function has the form:

$$f(t) = \frac{1}{\pi(1+t^2)}, \quad t \in \mathbb{R}.$$

Obtain necessary and sufficient conditions on a sequence of real numbers (a_n) such that $\sum_n a_n X_n$ converges a.s.

6. Let (M_n) be a non-negative UI martingale. Is it possible to find a random variable $Y \in \mathcal{L}_1$ such that

$$|M_n| \le Y, \quad n \ge 1?$$

Answer the same question, assuming that $M_n = \prod_{k=1}^n X_k$ for IRVs (X_n) . In both cases, either prove or give a counter-example.

7. Let (X_n) be IID Gaussian RVs with mean 0 and variance 1. Denote

$$Y_n = \frac{1}{n} \sum_{k=1}^n X_k, \quad Y^* = \sup_n |Y_n|.$$

Prove that

$$\mathbb{P}\left(Y^* \ge c\right) \le e^{-\frac{1}{2}c^2}, \quad c \ge 0.$$

8. Let (X_n) be Exp IID RVs, that is, their density function has the form:

$$f(t) = e^{-t}, \quad t \ge 0.$$

Let $S_n = X_1 + \dots + X_n$ and

$$\tau = \inf\{n \ge 1 : S_n \ge 1\}.$$

For $\lambda, \mu > 0$, compute $\mathbb{E}\left(e^{-\lambda \tau + (1-\mu)S_{\tau}}\right)$.