Basic Examination
 Probability
 Fall 2018

Time allowed: 180 minutes. Justify your answers.

1. Recite precisely the following definitions/facts/theorems/lemmas:
(a) Dynkin's lemma on π-systems.
(b) First and second Borel-Cantelli lemmas.
(c) Kolmogorov's three-series theorem on convergence of sums of IRVs.
(d) Let $\left(X_{n}\right)$ be a non-negative submartingale. Will it converge (i) almost surely, (ii) in probability, (iii) in \mathcal{L}_{1}, (iv) weakly to some random variable X_{∞} ? If needed, formulate additional (as sharp as possible) conditions on $\left(X_{n}\right)$ under which these convergences take place.
2. Let X_{1}, \ldots, X_{N} be IID Gaussian RVs with mean 0 and variance 1 and denote $S_{N}=\sum_{1 \leq n \leq N} X_{n}$ and $Y=I\left(S_{N}>0\right)$. Compute the function $f=f(x)$ such that

$$
f(Y)=\mathbb{E}\left(X_{1} \mid Y\right)
$$

3. Let (X_{n}) be IID bounded (non-constant) RVs and suppose that a sequence of real numbers $\left(a_{n}\right)$ is chosen so that the series $\sum_{n} a_{n} X_{n}$ converges almost surely.
(a) Will the series $\sum_{n} a_{n} X_{n}$ converge in \mathcal{L}_{1} ?
(b) Is it true that $\sum_{n}\left|a_{n}\right|<\infty$?.
4. Let $\left(X_{n}\right)$ be a martingale bounded in \mathcal{L}_{2} and $\left(\mathcal{G}_{n}\right)$ be the filtration generated by the absolute values of $\left(X_{n}\right)$:

$$
\mathcal{G}_{n}=\sigma\left(\left|X_{1}\right|,\left|X_{2}\right|, \ldots,\left|X_{n}\right|\right), \quad n \geq 1
$$

Will the sequence $Y_{n}=\mathbb{E}\left(X_{n} \mid \mathcal{G}_{n}\right), n \geq 1$, converge (a) a.s.? (b) in \mathcal{L}_{2} ?
5. Let $\left(X_{n}\right)$ be IID RVs with uniform distribution on $(-1,1)$. Denote

$$
S_{n}=X_{1}+\cdots+X_{n}, \quad S_{0}=0
$$

Show that there is a constant $a>0$ such that

$$
\limsup _{n} \mathbb{P}\left(\max _{k \leq n} S_{k} \geq c \sqrt{n}\right) \leq e^{-a c^{2}}, \quad \forall c>0
$$

Write your best possible estimate for a.
6. Let $\left(X_{n}\right)$ be IID RVs with the distribution function

$$
\mathbb{P}\left(X_{1} \leq x\right)=\frac{1}{\pi} \int_{-\infty}^{x} \frac{d y}{1+y^{2}}, \quad x \in \mathbb{R}
$$

There are a constant $p>0$ and a random variable $Y \neq 0$ such that the sequence

$$
Y_{n} \triangleq \frac{1}{n^{p}} \sum_{1 \leq k \leq n} X_{k}, \quad n \geq 1
$$

converges weakly to Y. Compute p and the distribution function of Y.
7. Let $\left(X_{n}\right)$ be a symmetric random walk on integers starting at 0 . For an integer $a>0$ define the hitting time

$$
\tau=\inf \left\{n \geq 0: X_{n}=a\right\}
$$

Compute the Laplace transform $L(\lambda)=\mathbb{E}\left(e^{-\lambda \tau}\right), \lambda \geq 0$ and the mean $\mathbb{E}(\tau)$.
8. Let (X_{n}) be IID non-negative RVs, each having density $\phi=\phi(x)$ with respect to the Lebesgue measure and expectation

$$
\mathbb{E}\left(X_{1}\right)=\int_{0}^{\infty} x \phi(x) d x=1
$$

Let $Y_{0}=1$ and $Y_{n}=\prod_{k=1}^{n} X_{k}, n \geq 1$.
(a) Obtain a (deterministic) integral equation, which solution yields

$$
a(\phi)=\mathbb{P}\left(\max _{n \geq 0} Y_{n} \geq 2\right)
$$

(b) Write your best estimate for $a^{*}=\sup _{\phi} a(\phi)$.

