DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

Basic Examination Probability Fall 2018

Time allowed: 180 minutes. Justify your answers.

- 1. Recite precisely the following definitions/facts/theorems/lemmas:
 - (a) Dynkin's lemma on π -systems.
 - (b) First and second Borel-Cantelli lemmas.
 - (c) Kolmogorov's three-series theorem on convergence of sums of IRVs.
 - (d) Let (X_n) be a non-negative submartingale. Will it converge (i) almost surely, (ii) in probability, (iii) in \mathcal{L}_1 , (iv) weakly to some random variable X_{∞} ? If needed, formulate additional (as sharp as possible) conditions on (X_n) under which these convergences take place.
- 2. Let X_1, \ldots, X_N be IID Gaussian RVs with mean 0 and variance 1 and denote $S_N = \sum_{1 \le n \le N} X_n$ and $Y = I(S_N > 0)$. Compute the function f = f(x) such that

$$f(Y) = \mathbb{E}\left(\left. X_1 \right| Y \right).$$

- 3. Let (X_n) be IID bounded (non-constant) RVs and suppose that a sequence of real numbers (a_n) is chosen so that the series $\sum_n a_n X_n$ converges almost surely.
 - (a) Will the series $\sum_{n} a_n X_n$ converge in \mathcal{L}_1 ?
 - (b) Is it true that $\sum_n |a_n| < \infty$?.
- 4. Let (X_n) be a martingale bounded in \mathcal{L}_2 and (\mathcal{G}_n) be the filtration generated by the absolute values of (X_n) :

$$\mathcal{G}_n = \sigma(|X_1|, |X_2|, \dots, |X_n|), \quad n \ge 1.$$

Will the sequence $Y_n = \mathbb{E}(X_n | \mathcal{G}_n), n \ge 1$, converge (a) a.s.? (b) in \mathcal{L}_2 ?

5. Let (X_n) be IID RVs with uniform distribution on (-1, 1). Denote

$$S_n = X_1 + \dots + X_n, \quad S_0 = 0.$$

Show that there is a constant a > 0 such that

$$\limsup_{n} \mathbb{P}\left(\max_{k \le n} S_k \ge c\sqrt{n}\right) \le e^{-ac^2}, \quad \forall c > 0.$$

Write your best possible estimate for a.

6. Let (X_n) be IID RVs with the distribution function

$$\mathbb{P}(X_1 \le x) = \frac{1}{\pi} \int_{-\infty}^x \frac{dy}{1+y^2}, \quad x \in \mathbb{R}.$$

There are a constant p > 0 and a random variable $Y \neq 0$ such that the sequence

$$Y_n \triangleq \frac{1}{n^p} \sum_{1 \le k \le n} X_k, \quad n \ge 1,$$

converges weakly to Y. Compute p and the distribution function of Y.

7. Let (X_n) be a symmetric random walk on integers starting at 0. For an integer a > 0 define the hitting time

$$\tau = \inf\{n \ge 0 : X_n = a\}.$$

Compute the Laplace transform $L(\lambda) = \mathbb{E}(e^{-\lambda \tau}), \ \lambda \ge 0$ and the mean $\mathbb{E}(\tau)$.

8. Let (X_n) be IID non-negative RVs, each having density $\phi = \phi(x)$ with respect to the Lebesgue measure and expectation

$$\mathbb{E}(X_1) = \int_0^\infty x\phi(x)dx = 1.$$

Let $Y_0 = 1$ and $Y_n = \prod_{k=1}^n X_k$, $n \ge 1$.

(a) Obtain a (deterministic) integral equation, which solution yields

$$a(\phi) = \mathbb{P}\left(\max_{n \ge 0} Y_n \ge 2\right).$$

(b) Write your best estimate for $a^* = \sup_{\phi} a(\phi)$.