1. Recite precisely the following definitions/facts/theorems/lemmas:
 (a) Tail σ-algebra. Kolmogorov’s $0 - 1$ law.
 (b) Kolmogorov’s three-series theorem on convergence of sums of IRVs.
 (c) Doob’s maximal L_p inequalities for martingales.
 (d) Method of characteristic functions in weak convergence.

2. Let (X_n) be IID RVs with uniform distribution on $[0, 1]$. For each of the items below describe all sequence of real numbers (a_n) such that $\sum_n a_n X_n$ converges (i) almost surely, (ii) weakly, (iii) in L_1, (iv) in L_2.

3. Let (M_n) be a martingale bounded in L_2, that is, $\sup_n \mathbb{E}[M_n^2] < \infty$. Is it possible to find a random variable $Y \in L_2$ such that $|M_n| \leq Y$, $n \geq 1$?
 Justify your answer. Answer same question but with L_2 replaced by L_1.

4. Let (X_n) be independent non-negative random variables, each of mean 1 and set $Y_n \triangleq \prod_{k=1}^n X_k$, $n \geq 1$. Will the sequence (Y_n) cross the barrier $a > 1$ with probability one? If not, then what is the maximal possible value for such probability? Justify the answer. In particular, construct an explicit example where the maximal value is attained.

5. Let (X_n) be IID Gaussian RVs with mean 0 and variance 1. Denote $S_n = X_1 + \cdots + X_n$, $S_0 = 0$.
 Prove that
 $$\mathbb{P}\left[\max_{k \leq n} S_k \geq c\right] \leq e^{-\frac{c^2}{2}}, \quad \forall c > 0.$$
6. Let \((X_n)\) be sequence of RVs such that \(X_n \to X\) (a.s) and \(|X_n| \leq Y \in \mathcal{L}_1\). Let \((\mathcal{F}_n)\) be a filtration. Show that \(\mathbb{E}(X_n|\mathcal{F}_n) \to \mathbb{E}(X|\mathcal{F}_\infty)\) (a.s) and in \(\mathcal{L}_1\).

7. Let \((X_n)\) be a random walk on integers starting at 0 with the probability \(0 < p < 1\) to go up and the probability \(q = 1 - p > p\) to go down. For a positive integer \(a\) define the stopping time

\[\tau = \inf\{n \geq 0 : X_n \geq a\}.
\]

Compute \(\mathbb{P}(\tau < \infty)\).

8. A gambler throws dice until she gets \(N\) sixes in a row. The cost of one throw is \(q\) and the reward at the end is \(A\). Find the relationship between \(q\), \(A\) and \(N\) for the game to be fair, that is, for the expected payoff to be 0.