DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

Basic Examination Probability Spring 2018

Time allowed: 180 minutes.

- 1. Recite precisely the following definitions/facts/theorems/lemmas:
 - (a) Tail σ -algebra. Kolmogorov's 0-1 law.
 - (b) Kolmogorov's three-series theorem on convergence of sums of IRVs.
 - (c) Doob's maximal \mathcal{L}_p inequalities for martingales.
 - (d) Method of characteristic functions in weak convergence.
- 2. Let (X_n) be IID RVs with uniform distribution on [0, 1]. For each of the items below describe all sequence of real numbers (a_n) such that $\sum_n a_n X_n$ converges (i) almost surely, (ii) weakly, (iii) in \mathcal{L}_1 , (iv) in \mathcal{L}_2 .
- 3. Let (M_n) be a martingale bounded in \mathcal{L}_2 , that is, $\sup_n \mathbb{E}[M_n^2] < \infty$. Is it possible to find a random variable $Y \in \mathcal{L}_2$ such that

$$|M_n| \le Y, \quad n \ge 1?$$

Justify your answer. Answer same question but with \mathcal{L}_2 replaced by \mathcal{L}_1 .

- 4. Let (X_n) be independent non-negative random variables, each of mean 1 and set $Y_n \triangleq \prod_{k=1}^n X_k$, $n \ge 1$. Will the sequence (Y_n) cross the barrier a > 1 with probability one? If not, then what is the maximal possible value for such probability? Justify the answer. In particular, construct an explicit example where the maximal value is attained.
- 5. Let (X_n) be IID Gaussian RVs with mean 0 and variance 1. Denote

$$S_n = X_1 + \dots + X_n, \quad S_0 = 0.$$

Prove that

$$\mathbb{P}\left[\max_{k \le n} S_k \ge c\right] \le e^{-\frac{c^2}{2n}}, \quad \forall c > 0.$$

- 6. Let (X_n) be sequence of RVs such that $X_n \to X$ (a.s) and $|X_n| \leq Y \in \mathcal{L}_1$. Let (\mathcal{F}_n) be a filtration. Show that $\mathbb{E}(X_n|\mathcal{F}_n) \to \mathbb{E}(X|\mathcal{F}_\infty)$ (a.s) and in \mathcal{L}_1 .
- 7. Let (X_n) be a random walk on integers starting at 0 with the probability 0 to go up and the probability <math>q = 1 p > p to go down. For a positive integer *a* define the stopping time

$$\tau = \inf\{n \ge 0 : X_n \ge a\}.$$

Compute $\mathbb{P}(\tau < \infty)$.

8. A gambler throws dice until she gets N sixes in a row. The cost of one throw is q and the reward at the end is A. Find the relationship between q, A and N for the game to *fair*, that is, for the expected payoff to be 0.