DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

Basic Examination Probability Fall 2016

Time allowed: 180 minutes.

- 1. Recite precisely the following definitions/facts/theorems/lemmas:
 - (a) Give the definitions of the following convergences: (i) almost surely, (ii) in probability, (iii) in \mathcal{L}_1 , (iv) weak (= in distribution). Specify all relations between these convergences.
 - (b) Doob's maximal \mathcal{L}_p inequalities for martingales.
 - (c) Let (X_n) be a non-negative supermartingale. Will it converge (i) almost surely, (ii) in probability, (iii) in \mathcal{L}_1 , (iv) weakly to some random variable X_{∞} ? If needed, formulate additional (ideally, necessary and sufficient) conditions on (X_n) under which these convergences take place.
 - (d) Method of characteristic functions in weak convergence.
- 2. Let (X_n) be IID RVs such that

$$\mathbb{E}[X_1] = 0, \quad 0 < \mathbb{E}[X_1^2] < \infty.$$

For each of the items (i)–(iv) describe all sequences of real numbers (a_n) such that $\sum_n a_n X_n$ converges (i) almost surely, (ii) in probability, (iii) in \mathcal{L}_1 , (iv) in \mathcal{L}_2 .

3. Let (X_n) be IID RVs in \mathcal{L}_1 such that $X_1 \ge 0$, $\mathbb{E}[X_1] = 1$ and $X_1 \ne 1$. Set

$$Y_n \triangleq \prod_{k=1}^n X_k.$$

Can we find a filtration (\mathcal{F}_n) and a random variable Y_∞ such that $Y_n = \mathbb{E}[Y_\infty | \mathcal{F}_n]$?

4. Let (X_n) be IID RVs in \mathcal{L}_2 with common zero mean. Denote

$$Y_n = \frac{1}{n} \sum_{k=1}^n X_k, \quad Y^* = \sup_n |Y_n|.$$

Show that for p > 1 there is a constant c = c(p) (dependent only on p) such that

$$\mathbb{E}\left[(Y^*)^p\right] \le c(p)\mathbb{E}\left[|X_1|^p\right].$$

- 5. A dice is thrown repeatedly until the sequence "6,6, ...,6" of length N appears. Compute the expected value of the sum of outcomes.
- 6. Let (X_n) be a symmetric random walk on integers starting at 0 and let T > 0. Among all stopping times τ with $\mathbb{E}[\tau] \leq a^2$, where $a \in \mathbb{Z}_+$, find the one that maximizes $\mathbb{E}[|X_{\tau}|]$.