Probabilistic Combinatorics (Fall 2024)

Monday, September 9, 2024 (in-person exam) Solve any four of the five problems below.

1. Prove that there is an absolute constant C > 0 so that for every $n \times n$ matrix with distinct real entries, one can permute its rows so that no column in the permuted matrix contains an increasing subsequence of length at least $C\sqrt{n}$.

Sketch. Randomly permute and compute expected number of increasing subsequences of length $C\sqrt{n}$. Use Markov and apply the union bound.

2. Let f(n, p) be the minimum number of colors needed to edge-color K_n so that no K_p receives fewer than p colors. Show that $f(n, 4) = O(n^{2/3})$.

Sketch. Local lemma.

3. For $1 \le i \le n$, let $v_i = (x_i, y_i)$ be *n* two-dimensional vectors, where each x_i and y_i is an integer whose absolute value does not exceed $2^{n/2}/(100\sqrt{n})$. Show that there are two disjoint sets $I, J \subset \{1, 2, ..., n\}$ such that

$$\sum_{i \in I} v_i = \sum_{j \in J} v_j \, .$$

Sketch. Choose random sums: $X = \sum_{i=1}^{n} \epsilon_i x_i$ and $Y = \sum_{i=1}^{n} \epsilon_i y_i$, with ϵ_i equal to 0 or 1, with equal probability and independently over *i*. Use Cheyshev's inequality.

- 4. Let \mathcal{F} be a collection of subsets of [n] with the following two properties:
 - (intersecting) $A, B \in \mathcal{F}$ implies $A \cap B \neq \phi$, and
 - $A, B \in \mathcal{F}$ implies $A \cup B \neq [n]$.
 - i) Show that $|\mathcal{F}| \leq 2^{n-2}$.
 - ii) Is there an example family showing tightness in the inequality? If so, provide one.

Sketch. FKG.

5. We have a collection of n bins. A sequence of 2n balls arrive one at a time. When ball i arrives a bin A_i is chosen uniformly at random. If A_i is **not** an empty bin then the i^{th} ball is placed in A_i . If bin A_i is empty then a second bin B_i is chosen at random and the i^{th} ball is placed in that bin (regardless of the number balls already in the bin).

Let Y be the number of empty bins after all 2n balls have been placed in binds. Find a real number α such that $Y = (\alpha \pm o(1))n$ with high probability. (You do not need to prove concentration; simply find the number α .)

Sketch. Differential equations method. Note that the expected one-step change in Y is $-(Y/n)^2$. Then introduce y(t) that gives the trajectory. This satisfies $dy/dt = -y^2$ and y(0) = 1. So y(t) = 1/(1+t).