Probabilistic Combinatorics (Fall 2023)

Thursday, September 7, 2023 (in-person exam)

Solve any four of the problems below.

Problem 1. Let $k \geq 3$ be fixed and let $p=c / n$. Show that there exists $\theta=\theta(c, k)>0$ such that w.h.p. all vertex sets S with $|S| \leq \theta n$ contain fewer than $k|S| / 2$ edges. Deduce that w.h.p. either the k-core of $G_{n, p}$ is empty or it has size at least θn.
(Recall: Given a positive integer k, the k-core of a graph $G=(V, E)$ is the largest set $S \subseteq V$ such that the minimum degree in the vertex-induced subgraph $G[S]$ is at least k.)

Problem 2. Let $v_{1}, v_{2}, \ldots v_{n}$ be n vectors from $\{ \pm 1\}^{n}$ chosen uniformly and independently. Let M_{n} be the largest pairwise dot product in absolute value: i.e

$$
M_{n}=\max _{i \neq j}\left|v_{i} \cdot v_{j}\right| .
$$

Prove that

$$
\frac{M_{n}}{2 \sqrt{n \ln n}} \rightarrow 1
$$

in probability as $n \rightarrow \infty$.
Recall that to show $\frac{M_{n}}{2 \sqrt{n \ln n}}$ converges to 1 in probability, we must show that for every $\epsilon>0$,

$$
\operatorname{Pr}\left[\left|\frac{M_{n}}{2 \sqrt{n \ln n}}-1\right|>\epsilon\right] \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Problem 3. Prove that for every $k, r(k \geq 2)$ there exists a family \mathcal{F} of k-sets so that $|A \cap B| \leq 1$ for all $A, B \in \mathcal{F}$ and for any r-coloring of the underlying points some $A \in \mathcal{F}$ is monochromatic.

Hint: Use the deletion/alteration method
Problem 4. Let k be sufficiently large. Let \mathcal{F} be a k-uniform family of sets and suppose that no element belongs to more than k sets of \mathcal{F}. Then show that it is possible to color the elements using $r=\lfloor k / \log k\rfloor$ colors so that every member of \mathcal{F} has at most $\lceil 2 e \log k\rceil$ elements of the same color.

Problem 5. An urn initially contains one white and one black ball. At each stage a ball is drawn and is then replaced in the urn along with another ball of the same color. Let Z_{n} denote the fraction of balls in the urn that are white after the nth replication.
(a) Show that $\left\{Z_{n}, n \geq 1\right\}$ is a martingale.
(b) Show that the probability that the fraction of white balls in the urn is ever as large as $3 / 4$ is at most $2 / 3$.

