Probabilistic Combinatorics (Fall 2023)

Thursday, September 7, 2023 (in-person exam) Solve any four of the problems below.

Problem 1. Let $k \ge 3$ be fixed and let p = c/n. Show that there exists $\theta = \theta(c, k) > 0$ such that w.h.p. all vertex sets S with $|S| \le \theta n$ contain fewer than k|S|/2 edges. Deduce that w.h.p. either the k-core of $G_{n,p}$ is empty or it has size at least θn .

(Recall: Given a positive integer k, the k-core of a graph G = (V, E) is the largest set $S \subseteq V$ such that the minimum degree in the vertex-induced subgraph G[S] is at least k.)

Problem 2. Let $v_1, v_2, \ldots v_n$ be *n* vectors from $\{\pm 1\}^n$ chosen uniformly and independently. Let M_n be the largest pairwise dot product in absolute value: i.e

$$M_n = \max_{i \neq j} \left| v_i \cdot v_j \right|.$$

Prove that

$$\frac{M_n}{2\sqrt{n\ln n}} \to 1$$

,

in probability as $n \to \infty$.

Recall that to show $\frac{M_n}{2\sqrt{n\ln n}}$ converges to 1 in probability, we must show that for every $\epsilon > 0$,

$$\Pr\left[\left|\frac{M_n}{2\sqrt{n\ln n}} - 1\right| > \epsilon\right] \to 0 \text{ as } n \to \infty.$$

Problem 3. Prove that for every $k, r \ (k \ge 2)$ there exists a family \mathcal{F} of k-sets so that $|A \cap B| \le 1$ for all $A, B \in \mathcal{F}$ and for any r-coloring of the underlying points some $A \in \mathcal{F}$ is monochromatic.

Hint: Use the *deletion/alteration method*

Problem 4. Let k be sufficiently large. Let \mathcal{F} be a k-uniform family of sets and suppose that no element belongs to more than k sets of \mathcal{F} . Then show that it is possible to color the elements using $r = \lfloor k/\log k \rfloor$ colors so that every member of \mathcal{F} has at most $\lceil 2e \log k \rceil$ elements of the same color.

Problem 5. An urn initially contains one white and one black ball. At each stage a ball is drawn and is then replaced in the urn along with another ball of the same color. Let Z_n denote the fraction of balls in the urn that are white after the *n*th replication.

(a) Show that $\{Z_n, n \ge 1\}$ is a martingale.

(b) Show that the probability that the fraction of white balls in the urn is ever as large as 3/4 is at most 2/3.