Probabilistic Combinatorics: Sample Basic Exam

1. Which functions \(p = p(n) \) have the property
 \[
 Pr(G_{n,p} \text{ has no isolated vertices}) \to 1?
 \]

2. Let \(\mathcal{F} \) be a collection of \(k \)-element subsets of a set \(X \) with the property that no element of \(X \) is in more than \(k \) sets. (In other words, \(\mathcal{F} \) is a \(k \)-uniform hypergraph with maximum degree \(k \).) Prove that if \(k \) is sufficiently large then there is a coloring of \(X \) in \(\lceil k/\log k \rceil \) colors such that no set in \(\mathcal{F} \) has more than \(10 \log k \) elements with the same color.

3. Let \(\mathcal{H} \) be a collection of subsets of \([n] = \{1, 2, \ldots, n\} \) with the following property: If \(A \) and \(B \) are distinct sets in \(\mathcal{H} \) then the symmetric difference of \(A \) and \(B \) contains at least \(n/3 \) elements. How many sets can the collection \(\mathcal{H} \) contain?
 Prove upper and lower bounds on the maximum \(|\mathcal{H}| \). (You may assume \(n \) is large.)

4. We choose a set of integers \(A \subseteq [n] \) uniformly at random. Let the random variable \(X \) be the number of arithmetic progressions of length \((\log_2 n)/10 \) in \(A \). Prove that there is a sequence of integers \(f(n) \) such that \(f(n) \to \infty \) and \(X = (1 + o(1))f(n) \) with high probability. (Of course, you should try to make the \(o(1) \) term as small as possible.)

5. We have a collection of \(n \) bins. A sequence of \(n \) balls arrive one at a time. When ball \(i \) arrives a bin \(A_i \) is chosen uniformly at random. If \(A_i \) is an empty bin then the \(i^{th} \) ball is placed in \(A_i \). If bin \(A_i \) is not empty then a second bin \(B_i \) is chosen at random and the \(i^{th} \) ball is placed in that bin (regardless of the number balls already in the bin).
 Let \(Y \) be the number of empty bins after all \(n \) balls have been placed in bins. Find a real number \(\alpha \) such that \(Y = (\alpha + o(1))n \) with high probability. (You do not need to prove concentration; simply find the number \(\alpha \).)