1. Which functions p = p(n) have the property

 $Pr(G_{n,p} \text{ has no isolated vertices}) \rightarrow 1?$

- 2. Let \mathcal{F} be a collection of k-element subsets of a set X with the property that no element of X is in more than k sets. (In other words, \mathcal{F} is a k-uniform hypergraph with maximum degree k.) Prove that if k is sufficiently large then there is a coloring of X in $\lfloor k/\log k \rfloor$ colors such that no set in \mathcal{F} has more than 10 log k elements with the same color.
- 3. Let \mathcal{H} be a collection of subsets of $[n] = \{1, 2, ..., n\}$ with the following property: If A and B are distinct sets in \mathcal{H} then the symmetric difference of A and B contains at least n/3 elements. How many sets can the collection \mathcal{H} contain?

Prove upper and lower bounds on the maximum $|\mathcal{H}|$. (You may assume n is large.)

- 4. We choose a set of integers $A \subseteq [n]$ uniformly at random. Let the random variable X be the number of arithmetic progressions of length $(\log_2 n)/10$ in A. Prove that there is a sequence of integers f(n) such that $f(n) \to \infty$ and X = (1 + o(1))f(n) with high probability. (Of course, you should try to make the o(1) term as small as possible.)
- 5. We have a collection of n bins. A sequence of n balls arrive one at a time. When ball i arrives a bin A_i is chosen uniformly at random. If A_i is an empty bin then the i^{th} ball is placed in A_i . If bin A_i is not empty then a second bin B_i is chosen at random and the i^{th} ball is placed in that bin (regardless of the number balls already in the bin).

Let Y be the number of empty bins after all n balls have been placed in binds. Find a real number α such that $Y = (\alpha + o(1))n$ with high probability. (You do not need to prove concentration; simply find the number α .)