Basic Examination: MEASURE AND INTEGRATION January 21, 2025, 5:30pm-8:30pm

• This test is closed book: no notes, Internet sources, or other aids are permitted.

• You have 3 hours. The exam has a total of 5 questions and 100 points.

• You may use without proof standard results from the syllabus which are independent of the question asked. You must, however, clearly state the results you are using.

1. [15 points] Let (X, \mathcal{M}, μ) be a measure space, and let $f_n, g_n, f, g: X \to \mathbb{R}$, $n \in \mathbb{N}$, be measurable functions such that $f_n \to f$ in measure and $g_n \to g$ in measure. Prove that if $\mu(X) < \infty$ then $f_n g_n \to fg$ in measure.

$\mathbf{2}.$

- (i) [5 points] State Hölder's Inequality.
- (ii) [15 points] Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$, and let $f \in L^{\infty}(X)$. Prove that

$$\lim_{p \to \infty} ||f||_{L^p} = ||f||_{L^{\infty}}.$$

3.

- (i) [5 points] State Lebesgue Dominated Convergence Theorem.
- (ii) [15 points] Evaluate

$$\lim_{n\to\infty}\int_0^\infty \frac{n^{1/4}e^{-x^2n}}{1+x^2}\,dx.$$

4. Let (X, \mathcal{M}, μ) be a measure space, and suppose that $X = \bigcup_{n=1}^{\infty} E_n$, where $\{E_n\}$ is a collection of pairwise disjoint measurable sets such that $\mu(E_n) < \infty$ for all $n \in \mathbb{N}$. Define ν on \mathcal{M} by

$$\nu(E) := \sum_{n=1}^{\infty} \frac{\mu(E \cap E_n)}{2^n(\mu(E_n) + 1)}.$$

- (i) [10 points] Prove that ν is a finite measure on (X, \mathcal{M}) .
- (ii) [10 points] Prove that $\nu \ll \mu$ and $\mu \ll \nu$.
- (iii) [10 points] Find $\frac{d\mu}{d\nu}$ and $\frac{d\nu}{d\mu}$.

5.[15 points] Let (X, \mathcal{M}) be a measurable space, let $\lambda : \mathcal{M} \to \mathbb{R}$ be a signed measure on (X, \mathcal{M}) and let μ, ν be positive measures on (X, \mathcal{M}) such that $\mu = \nu - \lambda$. Prove that $\nu \ge \lambda^+$ and $\mu \ge \lambda^-$.