Basic Examination: MEASURE AND INTEGRATION August 26, 2024, 5:30pm-8:30pm

• This test is closed book: no notes, Internet sources, or other aids are permitted.

• You have 3 hours. The exam has a total of 5 questions and 100 points.

• You may use without proof standard results from the syllabus which are independent of the question asked. You must, however, clearly state the results you are using.

1. [20 points]

Let (X, \mathcal{M}, μ) be a measure space, let μ be a probability measure, and let $f \in L^p_{\mu}(X; \mathbb{R})$, for $p \in (1, \infty)$. Consider the function $\theta : [1, p] \to \mathbb{R}$ given by

$$\theta(r) := \ln ||f||_{L^r_\mu(X;\mathbb{R})}^r.$$

Is θ convex? Prove or disprove.

2.

(i) [8 points] Let (X, \mathcal{M}, μ) be a positive measure space with μ σ -finite, and let $f: X \to [0, \infty)$ be an integrable function. Prove that

$$\int_X f \, d\mu = (\mu \otimes \mathcal{L}^1)(\{(x, y) \in X \times [0, \infty) : 0 \le y \le f(x)\}),$$

where \mathcal{L}^1 is the 1-dimensional Lebesgue measure on \mathbb{R} , and $\mu \otimes \mathcal{L}^1$ stands for the product measure of μ and \mathcal{L}^1 .

(ii) [22 points] Let (X, \mathcal{M}, μ) be a measure space, and let $f : X \to \mathbb{R}$ be a measurable function. Let $p \in [1, \infty)$. Prove that $|f|^p$ is μ -integrable if and only if the function

$$t \in [0, \infty) \mapsto t^{p-1} \mu(\{x \in X : |f(x)| > t\})$$

is integrable with respect to \mathcal{L}^1 , and one has

$$\int_X |f|^p \, d\mu = p \int_0^\infty t^{p-1} \, \mu(\{x \in X : |f(x)| > t\}) \, dt.$$

3. Consider the Lebesgue measure space $(\mathbb{R}, \mathcal{M}, \mathcal{L}^1)$, where \mathcal{M} is the σ -algebra of Lebesgue measurable sets. Let ν be the counting measure on \mathcal{M} .

(i) [12 points] Is $\mathcal{L}^1 \ll \nu$? Prove or disprove.

Is there a measurable function $f : \mathbb{R} \to [0, \infty]$ such that for all $A \in \mathcal{M}$

$$\mathcal{L}^1(A) = \int_A f \, d\nu?$$

Prove or disprove.

(ii) [13 points] Show that ν does not have a Lebesgue Decomposition with respect to \mathcal{L}^1 . Why does the Lebesgue Decomposition Theorem fail?

4. [10 points]

Let (X, \mathcal{M}, μ) be a measure space, let μ be a probability measure, and let $f_n : X \to \mathbb{R}$ be μ -integrable functions, $n \in \mathbb{N}$.

Is this statement true or false? If

$$\sup_{n\in\mathbb{N}}||f_n||_{L^1}<\infty$$

then

$$\liminf_{n \to \infty} |f_n(x)| < \infty \text{ a.e.} x \in X.$$

Prove or disprove

5. [15 points]

Let (X, \mathcal{M}, μ) be a measure space, let μ be a probability measure, and let $f_n : X \to \mathbb{R}$ be μ -integrable functions, $n \in \mathbb{N}$. Assume that there exists M > 0 such that for all $n \in \mathbb{N}$

$$\int_X \left| f_n(x) - \int_X f_n \, d\mu \right|^2 \, d\mu(x) \le M \int_X \left| f_n \right| \, d\mu.$$

Prove that if

$$\limsup_{n\to\infty}\int_X |f_n|\,d\mu=\infty$$

then

$$\limsup_{n \to \infty} |f_n(x)| = \infty \text{ a.e.} x \in X.$$