Measure Theory Basic Exam.

Exam date: 2022-08-30. Time limit: 3 hours.

- This is a closed book test. You may not use any reference material or internet sources during the test.
- You may not seek or receive assistance.
- You may use standard results from the syllabus, unless explicitly stated otherwise.
- Good luck $\ddot{\smile}$.
- 1. Let (μ_n) be a sequence of positive measures on (X, Σ) be such that $\mu_{n+1}(E) \ge \mu_n(E)$ for every $E \in \Sigma$. Let $\mu(E) = \lim_{n \to \infty} \mu_n(E)$. Is μ necessarily a measure on (X, Σ) ? If yes, prove it. If no, find a counter example.
- 2. Let X be a compact metric space, and μ be a finite positive Borel measure. Prove that μ is regular. That is, for any $A \in \mathcal{B}(X)$ show that $\mu(A) = \sup\{\mu(K) \mid K \subseteq A, \text{ and } K \text{ is compact}\}.$
- 3. Suppose μ is a finite signed measure on (X, Σ) . Show that there exists a set $P \in \Sigma$ with $\mu(P) \ge \mu(X)$ such that $\mu(E) \ge 0$ for every $E \subseteq P$.

NOTE: Even though this is a standard result in your syllabus, please provide a complete proof here. Do not use the Radon-Nikodym or Hahn-Decomposition in your proof. You may, however, use other standard facts about measures that are independent of these results and this problem.

4. Let μ be a finite Borel measure on \mathbb{R}^d , and λ be the Lebesgue measure. If μ and λ are mutually singular then show

$$\lim_{r \to 0} \frac{\mu(B(x,r))}{\lambda(B(x,r))} = \infty, \quad \text{for } \mu\text{-almost every } x \in \mathbb{R}^d.$$

NOTE: Even though this is a standard result in your syllabus, please provide a complete proof here. You may however use without proof standard lemmas that were proved independently of this fact in standard references.

5. Let μ be a positive, σ -finite measure on (X, Σ) , and let $p, q \in (1, \infty)$ be such that $\frac{1}{p} + \frac{1}{q} > 1$. Let $K: X \times X \to \mathbb{R}$ be measurable with respect to the product σ algebra $\sigma(\Sigma \times \Sigma)$. Suppose there are finite constants C, D such that

$$\sup_{y \in X} \int_X |K(x,y)|^p \, d\mu(x) = C^p \,, \qquad \text{and} \qquad \sup_{x \in X} \int_X |K(x,y)|^p \, d\mu(y) = D^p \,.$$

Given $g \in L^q(X, \Sigma)$, define the function f by

$$f(x) \stackrel{\text{def}}{=} \int_X K(x, y) g(y) \, d\mu(y)$$

Explicitly find $r \in [1, \infty]$ such that $f \in L^r(X, \Sigma)$. Moreover, explicitly find an upper bound for $||f||_{L^r}$ in terms of p, q, C, D and $||g||_{L^q}$. Prove your answer.