Measure Theory Basic Exam.

Exam date: 2022-08-30. Time limit: 3 hours.

- This is a closed book test. You may not use any reference material or internet sources during the test.
- You may not seek or receive assistance.
- You may use standard results from the syllabus, unless explicitly stated otherwise.
- Good luck \because.

1. Let $\left(\mu_{n}\right)$ be a sequence of positive measures on (X, Σ) be such that $\mu_{n+1}(E) \geqslant \mu_{n}(E)$ for every $E \in \Sigma$. Let $\mu(E)=\lim _{n \rightarrow \infty} \mu_{n}(E)$. Is μ necessarily a measure on (X, Σ) ? If yes, prove it. If no, find a counter example.
2. Let X be a compact metric space, and μ be a finite positive Borel measure. Prove that μ is regular. That is, for any $A \in \mathcal{B}(X)$ show that $\mu(A)=\sup \{\mu(K) \mid K \subseteq A$, and K is compact $\}$.
3. Suppose μ is a finite signed measure on (X, Σ). Show that there exists a set $P \in \Sigma$ with $\mu(P) \geqslant \mu(X)$ such that $\mu(E) \geqslant 0$ for every $E \subseteq P$.
Note: Even though this is a standard result in your syllabus, please provide a complete proof here. Do not use the Radon-Nikodym or Hahn-Decomposition in your proof. You may, however, use other standard facts about measures that are independent of these results and this problem.
4. Let μ be a finite Borel measure on \mathbb{R}^{d}, and λ be the Lebesgue measure. If μ and λ are mutually singular then show

$$
\lim _{r \rightarrow 0} \frac{\mu(B(x, r))}{\lambda(B(x, r))}=\infty, \quad \text { for } \mu \text {-almost every } x \in \mathbb{R}^{d}
$$

Note: Even though this is a standard result in your syllabus, please provide a complete proof here. You may however use without proof standard lemmas that were proved independently of this fact in standard references.
5. Let μ be a positive, σ-finite measure on (X, Σ), and let $p, q \in(1, \infty)$ be such that $\frac{1}{p}+\frac{1}{q}>1$. Let $K: X \times X \rightarrow \mathbb{R}$ be measurable with respect to the product σ algebra $\sigma(\Sigma \times \Sigma)$. Suppose there are finite constants C, D such that

$$
\sup _{y \in X} \int_{X}|K(x, y)|^{p} d \mu(x)=C^{p}, \quad \text { and } \quad \sup _{x \in X} \int_{X}|K(x, y)|^{p} d \mu(y)=D^{p}
$$

Given $g \in L^{q}(X, \Sigma)$, define the function f by

$$
f(x) \stackrel{\text { def }}{=} \int_{X} K(x, y) g(y) d \mu(y) .
$$

Explicitly find $r \in[1, \infty]$ such that $f \in L^{r}(X, \Sigma)$. Moreover, explicitly find an upper bound for $\|f\|_{L^{r}}$ in terms of p, q, C, D and $\|g\|_{L^{q}}$. Prove your answer.

