Basic Examination: Measure and Integration January 2022

- This test is closed book: no notes or other aids are permitted.
- The exam has a total of 5 questions and 100 points (20 each).
- You have 3 hours. You must scan and upload your solutions to the Box folder within 15 minutes afterwards.
- You may use without proof standard results from the syllabus (not homework) which are independent of the question asked, unless explicitly instructed otherwise. You must, however, clearly state the result you are using.

Below, if not stated explicitly, (X, \mathcal{F}, μ) is a measure space, $L_{p}=L_{p}(X, \mathcal{F}, \mu)$ is the standard L_{p} space $(p \in[1, \infty])$ and m is Lebesgue measure.

1. Let $f \in L^{1}(\mathbb{R})$. Prove that $F(x):=\sum_{n=-\infty}^{\infty} f(n+x)$ converges absolutely, for m-a.e. $x \in[0,1]$.
2. Let $p \in[1, \infty)$. Suppose $f_{n} \in L^{p}(X)$ for each $n \in \mathbb{N}$, that $f_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$ for μ-a.e. $x \in X$, and assume

$$
\int\left|f_{n}\right|^{p} d \mu \rightarrow \int|f|^{p} d \mu
$$

Prove that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$. (Hint: modify the proof of the dominated convergence theorem, after showing $h_{n}:=2^{-p}\left|f_{n}-f\right|^{p} \leq g_{n}:=\left|f_{n}\right|^{p}+|f|^{p}$.)
3. Let $p \in(1, \infty)$ and let $u: \mathbb{R} \rightarrow[0, \infty)$ be continuous with $\|u\|_{p}=\left(\int|u(x)|^{p} d m(x)\right)^{1 / p}<\infty$. Let $\alpha, \beta>0$, and define

$$
v_{n}(x)=\sum_{k=1}^{n} \alpha^{k} u\left(\beta^{k} x\right) \quad \text { for each } n \in \mathbb{N}, \text { and } \quad v(x)=\sum_{k=1}^{\infty} \alpha^{k} u\left(\beta^{k} x\right)
$$

Assume $\beta^{1 / p}>\alpha$. Find a constant $C>0$ independent of u such that necessarily $\|v\|_{p} \leq C\|u\|_{p}$.
4. Let $X=[0,1]$, and suppose λ is a finite Borel measure on $X \times X$ such that $\lambda \ll m \times m$, with

$$
m(A)=\lambda(A \times X)=\lambda(X \times A) \quad \text { for all Borel } A \subset[0,1]
$$

Is it true or false that necessarily $\lambda=m \times m$? Prove or provide a counterexample.
5. Let μ and ν be two Borel measures on the real interval $X=[0,1]$ such that

$$
c_{n}=\int x^{n} d \mu(x)=\int x^{n} d \nu(x)<\infty \quad \text { for every integer } n \geq 0
$$

(i) Prove that $\mu(I)=\nu(I)$ for each open interval $I \subset X$.
(ii) Infer that $\mu=\nu$.

