- This test is **closed book**: no notes or other aids are permitted.
- The exam has a total of 5 questions and 100 points (20 each).

• You have 3 hours. You must scan and email your solutions to the proctor within 15 minutes afterwards.

• You may use without proof *standard* results from the syllabus (not homework) which are independent of the question asked, unless explicitly instructed otherwise. You must, however, **clearly** state the result you are using.

Below, if not stated explicitly, (X, \mathcal{F}, μ) is a measure space, $L_p = L_p(X, \mathcal{F}, \mu)$ is the standard L_p space $(p \in [1, \infty])$ and m is Lebesgue measure.

1. Find all positive real numbers α and β such that

$$I := \int_0^1 \int_0^1 \frac{1}{(x^{\alpha} + y)^{\beta}} \, dx \, dy < \infty.$$

2. Let $f_n: X \to \mathbb{R}$ (n = 1, 2, ...) be \mathcal{F} -measurable functions converging in measure to a function f. Assume that there exists a μ -integrable function $g: X \to [0, \infty)$ such that

$$|f_n(x)| \le g(x)$$
 for μ -a.e. $x \in X$ and all n .

Prove that $\int_X |f_n - f| d\mu \to 0 \text{ as } n \to \infty.$

3. Let $f: X \to [0, \infty)$ be measurable, and let $g(t) = \mu(\{x : f(x) > t\})$ for all real t. Prove (using elementary properties of the integral) that

$$\int_X f^2 d\mu = \int_{[0,\infty)} 2t g(t) dm(t).$$

- **4.** (a) Show that $\bigcap_{p \in [1,\infty)} L_p \neq L_\infty$, in general.
- (b) If $f \in \bigcap_{p \in [1,\infty)} L_p$, prove that the map $p \mapsto p \log ||f||_p$ is *convex* on $[1,\infty)$.

5. Let $A \subset \mathbb{R}$ be Lebesgue measurable and have the property that A+r = A for all rational numbers r. (Recall $A + r = \{x + r : x \in A\}$.) If m(A) > 0, prove that the complement of A has measure zero. (Hint: Consider integrals of $\mathbb{1}_A$ over intervals.)