- This test is **closed book**: no notes or other aids are permitted.
- You have 3 hours. The exam has a total of 5 questions and 100 points (20 each).

• You may use without proof standard results from the syllabus which are independent of the question asked, unless explicitly instructed otherwise. You must, however, **clearly** state the result you are using.

Below, if not stated explicitly, (X, \mathcal{F}, μ) is a measure space, $L_p = L_p(X, \mathcal{F}, \mu)$ is the standard L_p space $(p \in [1, \infty])$ and m is Lebesgue measure.

1. Suppose $I = [0, 1], f_n : I \to \mathbb{R}$ is Lebesgue measurable for all $n \in \mathbb{N}$, and

$$\int_{[0,1]} |f_n|^2 \, dm \le 5 \quad \text{for all } n \in \mathbb{N}.$$

Suppose moreover that $f_n(x) \to 0$ as $n \to \infty$, for every $x \in [0, 1]$.

- $\lim_{n \to \infty} \int_{I} |f_{n}|^{2} dm = 0?$ $\lim_{n \to \infty} \int_{I} |f_{n}| dm = 0?$ (a) Does it necessarily follow that
- (b) Does it necessarily follow that In each case, prove the implication or find a counterexample.
- **2.** Let $f_n \in L_1$ for all $n \in \mathbb{N}$. Which is always larger,

$$\left(\sum_{n=1}^{\infty} \left| \int f_n \, d\mu \right|^2 \right)^{1/2} \quad \text{or} \quad \int \left(\sum_{n=1}^{\infty} |f_n|^2 \right)^{1/2} d\mu \quad ?$$

Prove your answer.

3. Suppose $\mu(X) < \infty$. Let $f: X \to \mathbb{R}$ be \mathcal{F} -measurable, and define

$$g(x, y) = f(x) - f(y), \qquad x, y \in X.$$

If g is $\mu \times \mu$ -integrable on $X \times X$, is f necessarily μ -integrable? Prove or find a counterexample.

4. Let μ , ν , and ν_n be finite measures on (X, \mathcal{F}) , and suppose that $\nu_n \ll \mu$ for all $n \in \mathbb{N}$. Is the following true or false?

If
$$|\nu_n - \nu|(X) \to 0$$
 as $n \to \infty$ then necessarily $\nu \ll \mu$.

Prove or find a counterexample.

5. Let $K \subset \mathbb{R}^N$ be a compact set and let

$$E := \{ x \in \mathbb{R}^N : \text{dist}(x, K) = 1 \}, \qquad F := \{ x \in \mathbb{R}^N : \text{dist}(x, K) < 1 \}.$$

(a) Prove that for every $\varepsilon \in (0, \frac{1}{2})$ and every $x \in E$,

$$m(B(x_0,\varepsilon)\cap F) \ge \frac{1}{2^N}m(B(x_0,\varepsilon))$$

(b) Prove that E has Lebesgue measure zero.