DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

BASIC EXAMINATION MEASURE AND INTEGRATION AUGUST 2019

Time allowed: 3 hours.

Name: _____

Problem	Points
1 (20)	
2 (20)	
3 (20)	
4 (20)	
5 (20)	
Total (100)	

1. (20 points) Let μ and ν be two positive measures on a measurable space (X, \mathcal{M}) . Suppose that for every $\varepsilon > 0$ there exists E measurable such that $\mu(E) < \varepsilon$ and $\nu(E^c) < \varepsilon$. Show that $\mu \perp \nu$.

2. (20 points) Let $f \in L^{\infty}(\mathbb{R})$ be such that f(x + 1) = f(x) and $f(x) \ge 0$ for all $x \in \mathbb{R}$. Let $E \subset \mathbb{R}$ of finite Lebesgue measure. Show that

(1)
$$\lim_{n \to \infty} \int_E f(nx) dx = |E| \int_0^1 f(x) dx,$$

where |E| is the Lebesgue measure of E.

- 3. (20 points) Let (X, \mathcal{M}, μ) be a measure space. Assume $0 < \mu(X) < \infty$.
 - (i) Assume $f \in L^{\infty}(\mu)$. Prove that $f \in L^{p}(\mu)$ for all $p \in [1, \infty)$ and that

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}.$$

(ii) Assume $f \in L^p(\mu)$ for all $p \in [1, \infty)$ and that there exists M > 0 such that $||f||_p \le M$ for all $p \in [1, \infty)$. Show that $f \in L^{\infty}(\mu)$ and that $||f||_{\infty} \le M$

4. (20 points) Let (X, \mathcal{M}, μ) be a σ -finite measure space. Let f be a measurable function such that $|f|^p \in L^1(\mu)$. Show that

(i) For
$$p \ge 1$$
, $\int |f|^p d\mu = p \int_0^\infty t^{p-1} \mu(\{x : |f(x)| > t\}) dt.$
(ii) For $p > 1$, $\int |f|^p d\mu = (p-1) \int_0^\infty t^{p-2} \int_{\{x : |f(x)| > t\}} |f| d\mu dt.$

- 5. (20 points) Let $f_n : \mathbb{R} \to \mathbb{R}$ be a sequence of (Lebesgue) measurable functions such that
 - (a) $\{f_n\}_{n=1,2,\dots}$ converges in measure to some function f.
 - (b) $|f_n(x)| \leq \frac{1}{x^2}$ for every $n \in N$ and $x \in \mathbb{R}$
 - (c) There exists $M \in \mathbb{R}$ such that $||f_n||_2 \leq M$ for all $n \in \mathbb{N}$.

For each statement below: Either prove the statement or provide a counterexample.

- (i) $f_n \to f$ in $L^1(\mathbb{R})$ as $n \to \infty$.
- (ii) $f_n \to f$ in $L^2(\mathbb{R})$ as $n \to \infty$.