Basic Qualification Exam: Measure Theory.

Aug 31, 2015

- This is a closed book test. No calculators or computational aids are allowed.
- You have 2 hours. The exam has a total of 4 questions and 20 points.
- You may use without proof standard results from the syllabus which are independent of the question asked, unless explicitly instructed otherwise. You must, however, **CLEARLY** state the result you are using.

Unless otherwise stated, we always assume the underlying measure space is (X, Σ, μ) and μ is a positive measure. The Lebesgue measure on \mathbb{R}^d will be denoted by λ .

5 1. Find all $\alpha \in [0,\infty]$ for which there exists a Lebesgue measurable function $f: \mathbb{R} \to [0,\infty)$ such that

$$\lim_{n \to +\infty} \int_{[n,\infty)} f \, d\lambda = \alpha.$$

5 2. Let $1 \leq p < q < r \leq \infty$. True or false:

If
$$g \in L^q(X)$$
, then there exists $f \in L^p(X)$ and $h \in L^r(X)$ such that $g = f + h$.

Prove it, or find a counter example.

- 5 3. Prove the following special case of the fundamental theorem of Calculus. If $f : [0,1] \to \mathbb{R}$ is absolutely continuous, then show that f is differentiable almost everywhere, $f' \in L^1([0,1])$ and $f(1) f(0) = \int_0^1 f'$.
- 5 4. True or false:

If
$$f, g \in L^1(\mathbb{R}^2)$$
, then there exists $y \in \mathbb{R}^2$ such that $\int_{\mathbb{R}^2} |f(x-y)g(x+y)| d\lambda(x) < \infty$

Prove it, or find a counter example.