Basic Qualification Exam: Measure Theory.

Aug 28, 2014

- This is a closed book test. No calculators or computational aids are allowed.
- You have 2 hours. The exam has a total of 4 questions and 20 points.
- You may use without proof standard results from the syllabus which are independent of the question asked, unless explicitly instructed otherwise. You must, however, **CLEARLY** state the result you are using.

Unless otherwise stated, we always assume the underlying measure space is (X, Σ, μ) and μ is a positive measure. The Lebesgue measure on \mathbb{R}^d will be denoted by λ .

- 5 1. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be Borel measurable, and $g : \mathbb{R}^2 \to \mathbb{R}^2$ be Lebesgue measurable.
 - (a) True or false: $f \circ g$ is necessarily Lebesgue measurable. (No proof required.)
 - (b) True or false: $g \circ f$ is necessarily Lebesgue measurable. Prove it, or find a counter example.
- 5 2. Define R ⊂ ℝ² be the rectangle defined by R = [1,∞] × [-1,1]. For each of the functions below determine if the Lebesgue integral ∫_R f dλ exists in the extended sense. If yes, compute it. Justify your answer.
 (a) f(x,y) = sin(xy) exp(-x²y²).
 (b) f(x,y) = sin(xy) exp(-x² + y²).
- 5 3. Prove the following special case of the fundamental theorem of calculus.

If $f : [0,1] \to \mathbb{R}$ is absolutely continuous and strictly increasing, then f is differentiable almost everywhere, $f' \in L^1$ and $f(1) - f(0) = \int_0^1 f' d\lambda$.

[You may not use the fundamental theorem of calculus for this part. You may, however, other results that were proved independently of this fact in either 720 or a measure theory reference listed on the 2013 720 website.]

5 4. Let $P \subset [1,\infty]$ be the set of all $p \in [1,\infty]$ for which the following statement true:

If $f_n, f: [0,1] \to \mathbb{R}$ are integrable functions such that $\sup_{n \in \mathbb{N}} ||f_n||_{L^p} < \infty$ and $\lim_{n \to \infty} \int_A f_n \, d\lambda = \int_A f \, d\lambda$ for every $A \in \mathcal{B}([0,1])$, then $(f_n) \to f$ in measure.

Find P. Prove the above statement for all $p \in P$, and provide a counter example for all $p \in P^c \cap [1, \infty]$.