DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

Basic Examination Measure and Integration January 2011

Time allowed: 120 minutes.

Do four of the five problems. Indicate on the first page which problems you have chosen to be graded. All problems carry the same weight.

- 1. State and prove Lebesgue's monotone convergence theorem.
- 2. Let (X, \mathfrak{M}, μ) be a finite measure space and let $f_n, f: X \to \mathbb{R}$ be measurable functions such that $\{f_n\}$ converges to f in measure. Prove that if μ is finite and $g: \mathbb{R} \to \mathbb{R}$ is a continuous function, then $\{g \circ f_n\}$ converges to $g \circ f$ in measure.
- 3. Let (X, \mathfrak{M}, μ) be a measure space, let $1 and let <math>f, g \in L^p(X)$. Prove that the function

$$h(t) := \int_{X} \left| f + tg \right|^{p} d\mu, \quad t \in \mathbb{R},$$

is differentiable at t = 0 and find h'(0). What happens for p = 1?

- 4. Let $\nu : \mathcal{B}(0, \infty) \to [0, \infty]$ be a measure finite on compact sets and let μ be the Lebesgue measure restricted to $\mathcal{B}(0, \infty)$. Assume that $\nu \ll \mu$, that $\nu(B) = \nu(aB)$ for every Borel set $B \subset (0, \infty)$ and for every a > 0, and that $\frac{d\nu}{d\mu}$ is a continuous function. Prove that $\frac{d\nu}{d\mu}(x) = \frac{c}{x}$ for some constant $c \ge 0$ and all x > 0.
- 5. Let $\mu : \mathcal{B}(\mathbb{R}^N) \to [0,\infty]$ be a measure finite on compact sets, let $1 \leq p < \infty$ and let $f : \mathbb{R}^N \to \mathbb{R}$ be such that $[f] \in L^p(\mathbb{R}^N)$. Prove that there exists a Borel set $E \subset \mathbb{R}^N$, with $\mu(E) = 0$, such that for every $x \in \mathbb{R}^N \setminus E$,

$$\lim_{r \to 0^+} \frac{1}{\mu\left(\overline{B\left(x,r\right)}\right)} \int_{\overline{B(x,r)}} \left|f\left(y\right) - f\left(x\right)\right|^p \, d\mu\left(y\right) = 0.$$