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Do four of the five problems. Indicate on the first page which problems you have
chosen to be graded. All problems carry the same weight.

1. Let (X,M, µ) be a measure space and let fn, f : X → R be measurable functions.
Prove that if {fn} converges to f in measure, then there exists a subsequence {fnk

}
converging to f pointwise almost everywhere.

2. Let p > 1 and let fn : [0, 1]→ R, n ∈ N, be Lebesgue measurable functions such that

fn (x)→ f (x)

for all x ∈ [0, 1] for some function f : [0, 1]→ R and∫ 1

0

|fn (x)|p dx ≤ C for all n ∈ N,

for some p > 1 and for some constant C > 0. Prove that f ∈ Lp ([0, 1]), that fn → f
in Lq ([0, 1]) for all 1 < q < p, but that in general {fn} needs not converge to f in
Lp ([0, 1]) (give a counterexample).

3. Let X be a nonempty set, let M ⊂ P (X) be an algebra, and let µ : M → [0,∞] be a
finitely additive measure. Prive that µ is countably additive if and only if

µ

( ∞⋃
n=1

En

)
= lim

n→∞
µ (En)

for every increasing sequence {En} ⊂M such that
⋃∞

n=1En ∈M.

4. Consider the function

f (x) =
sinx

xa
, x > 0,

where a > 0. Determine for which values of the parameter a > 0 the function f is
Riemann integrable (in the sense of improper integrals) over (0,∞) and for which it is
Lebesgue integrable over (0,∞).

5. Given the sequence of functions

fn (x) =
e−n(x−n)

1 + x2
χ[n,∞) (x) ,

determine the largest subset of R where the sequence converges pointwise, and if the
convergence on the set is uniform. Calculate the limit

lim
n→∞

∫ ∞
0

fn (x) dx.


