BASIC EXAMINATION SAMPLE GENERAL TOPOLOGY

Do four of the five problems.

- 1. Consider the topology on \mathbb{R} for which $\mathcal{A} = \{[a, b) : a, b \in \mathbb{R}\}$ is a subbasis.
 - (a) Prove that for all $x \in \mathbb{R}$ there exists a countable local basis.
 - (b) Show that the space does not have a countable basis of topology.
- 2. Show that every compact Hausdorff topological space is normal.
- 3. Let $f : [a, b] \to \mathbb{R}$ and let

$$\operatorname{gr} f := \{(x, f(x)) : x \in [a, b]\}$$

be the graph of f.

Prove that the following two conditions are equivalent:

- (i) f is continuous.
- (ii) $\operatorname{gr} f$ is compact.
- 4. Let $f_n : [0,1] \to [0,1]$ be a sequence of functions such that for all n and all $x, y \in [0,1]$ such that |x y| > 1/n

$$|f_n(x) - f_n(y)| \le \frac{1}{n}|x - y|.$$

Show that f_n has a uniformly convergent subsequence.

5. Let (X, d) be a complete metric space and $S : X \to X$ such that $S^2 := S \circ S$ is a strict contraction. That is, there exists $\alpha \in [0, 1)$ such that

$$d(S^2(x), S^2(y)) \le \alpha d(x, y)$$
 for all $x, y \in X$.

Show that the mapping S has exactly one fixed point.