General Topology: Basic Exam

August 28, 2024

Do not flip the page until instructed.

Name: _____

Problem	Points
1	
2	
3	
4	
5	
Total	

Each problem is worth 20 points.

Problem 1

Let X and Y be topological spaces, where Y is connected. Let $p: X \to Y$ be a quotient map such that for every $y \in Y$ the preimage $p^{-1}(\{y\})$ is connected. Show that X is connected.

Problem 2

Denote by ℓ^{∞} the space of bounded sequences in \mathbb{R} with the metric

$$d_{\infty} \colon \ell^{\infty} \times \ell^{\infty} \to [0, \infty), \quad d_{\infty}((x_n)_n, (y_n)_n) = \sup_n |x_n - y_n|.$$

Let (X, d) be a separable metric space. Show that X isometrically embeds into ℓ^{∞} , that is, show that there is a map $f: X \to \ell^{\infty}$ with $d_{\infty}(f(x), f(y)) = d(x, y)$ for all $x, y \in X$.

Recall that a space X is separable if there is a countable set $D \subset X$ that is dense in X.

Hint: It might be helpful to first solve this for (X, d) a bounded, separable metric space and then adjust the solution for the general case.

Problem 3

Let (X, τ) be a topological space such that every compact $C \subset X$ is closed. Then for any strictly finer topology $\tau' \supset \tau$, the space (X, τ') is not compact.

Problem 4

Let X be a topological space, and let Y and Z be two compact Hausdorff spaces. Suppose there are embeddings $f: X \to Y$ and $g: X \to Z$ such that f(X) is dense in Y, g(X) is dense in Z, $|Y \setminus f(X)| = 1$, and $|Z \setminus g(X)| = 1$. Show that Y and Z are homeomorphic.

Problem 5

As usual, let $S^1 = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1\} \subset \mathbb{R}^2$ denote the circle. Let $f: S^1 \to S^1$ be any continuous function with $f(x) \neq x$ for all $x \in S^1$. Show that $g: S^1 \to S^1$ defined by $g(x) = \frac{f(x)-x}{|f(x)-x|}$ is not homotopic to a constant map.

20 points

20 points

20 points

20 points