General Topology: Basic Exam

January 25, 2023

Do not flip the page until instructed.

Name:

Problem	Points
1	
2	
3	
4	
5	
Total	

Each problem is worth 20 points.

Recall Urysohn's lemma: If X is a normal space and $A, B \subseteq X$ are closed, nonempty, and disjoint subsets of X, then there is a continuous map $f: X \rightarrow[0,1]$ with $f(A)=\{0\}$ and $f(B)=\{1\}$.

Let X be a normal space that is countable. Show that in X every path-component consists of a single point. In fact, show that every connected component of X consists of a single point.

Problem 2

20 points
(a) State Tietze's extension theorem.
(b) Let J be a set. Let X be a normal space, $A \subseteq X$ a closed subspace, and $f: A \rightarrow \mathbb{R}^{J}$ a continuous map. Show that there is a continuous map $F: X \rightarrow \mathbb{R}^{J}$ with $\left.F\right|_{A}=f$.
(c) A normal space Y is an absolute retract if for any normal Z and closed subspace $Y_{0} \subseteq Z$ homeomorphic to Y, there is a continuous map $r: Z \rightarrow Y_{0}$ with $r(y)=y$ for all $y \in Y_{0}$. Let X be a normal space. Show that if Y is an absolute retract and compact, then for any closed $A \subseteq X$ and $f: A \rightarrow Y$ a continuous map, there is a continuous map $F: X \rightarrow Y$ with $\left.F\right|_{A}=f$.

Problem 3

20 points
(a) Give the definition of a locally path-connected space.
(b) Let X be a Hausdorff space, and let $f:[0,1] \rightarrow X$ be continuous and surjective. Show that X is locally path-connected.

Problem 4

Let X be a non-compact space, and let $\Phi: X \rightarrow K$ be a metrizable compactification of X, that is, Φ is an embedding such that $\Phi(X)$ is dense in K, and K is metrizable and compact. Show that there is a metrizable compactification $\Psi: X \rightarrow K^{\prime}$ of X such that K is isometric to a subspace of K^{\prime}, but K is not isometric to K^{\prime}.

Hint: First construct a continuous map $f: X \rightarrow[0,1]$ that does not extend to a continuous map $\widehat{f}: K \rightarrow[0,1]$. Now use f and K to construct K^{\prime}.

Problem 5

20 points
(a) State Brouwer's fixed point theorem.
(b) Let $x_{0} \in S^{1}$ be some point on the circle S^{1}. Let $X=\left\{(x, y) \in S^{1} \times S^{1}: x=x_{0}\right.$ or $\left.y=x_{0}\right\}$. Show that there is a quotient map $q:[0,1]^{2} \rightarrow S^{1} \times S^{1}$ such that $q^{-1}(X)=\partial[0,1]^{2}$, the boundary of the square $[0,1]^{2}$.
(c) Let $f: S^{1} \times S^{1} \rightarrow S^{1} \times S^{1}$ be continuous. Show that if f has no fixed points, then there is an $x \in S^{1} \times S^{1}$ with $f(x) \in X$.

