General Topology: Basic Exam

January 25, 2023

Do not flip the page until instructed.

Name: ________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Each problem is worth 20 points.
Problem 1 20 points

Recall Urysohn’s lemma: If X is a normal space and $A, B \subseteq X$ are closed, nonempty, and disjoint subsets of X, then there is a continuous map $f: X \to [0, 1]$ with $f(A) = \{0\}$ and $f(B) = \{1\}$.

Let X be a normal space that is countable. Show that in X every path-component consists of a single point. In fact, show that every connected component of X consists of a single point.

Problem 2 20 points

(a) State Tietze’s extension theorem.
(b) Let J be a set. Let X be a normal space, $A \subseteq X$ a closed subspace, and $f: A \to \mathbb{R}^J$ a continuous map. Show that there is a continuous map $F: X \to \mathbb{R}^J$ with $F|_A = f$.
(c) A normal space Y is an absolute retract if for any normal Z and closed subspace $Y_0 \subseteq Z$ homeomorphic to Y, there is a continuous map $r: Z \to Y_0$ with $r(y) = y$ for all $y \in Y_0$. Let X be a normal space. Show that if Y is an absolute retract and compact, then for any closed $A \subseteq X$ and $f: A \to Y$ a continuous map, there is a continuous map $F: X \to Y$ with $F|_A = f$.

Problem 3 20 points

(a) Give the definition of a locally path-connected space.
(b) Let X be a Hausdorff space, and let $f: [0, 1] \to X$ be continuous and surjective. Show that X is locally path-connected.

Problem 4 20 points

Let X be a non-compact space, and let $\Phi: X \to K$ be a metrizable compactification of X, that is, Φ is an embedding such that $\Phi(X)$ is dense in K, and K is metrizable and compact. Show that there is a metrizable compactification $\Psi: X \to K'$ of X such that K is isometric to a subspace of K', but K is not isometric to K'.

Hint: First construct a continuous map $f: X \to [0, 1]$ that does not extend to a continuous map $\tilde{f}: K \to [0, 1]$. Now use f and K to construct K'.

Problem 5 20 points

(a) State Brouwer’s fixed point theorem.
(b) Let $x_0 \in S^1$ be some point on the circle S^1. Let $X = \{(x, y) \in S^1 \times S^1 : x = x_0$ or $y = x_0\}$. Show that there is a quotient map $q: [0, 1]^2 \to S^1 \times S^1$ such that $q^{-1}(X) = \partial[0, 1]^2$, the boundary of the square $[0, 1]^2$.
(c) Let $f: S^1 \times S^1 \to S^1 \times S^1$ be continuous. Show that if f has no fixed points, then there is an $x \in S^1 \times S^1$ with $f(x) \in X$.