Department of Mathematical Sciences Basic Exam in General Topology August 2022

Instructions: Answer each of the 5 questions.

1. (20 pts) Let $X = \prod_{\alpha \in J} X_{\alpha}$ be a non-empty product of topological spaces and $b \in X$. Show that

 $A = \{ a \in X \ | \ a_{\alpha} = b_{\alpha} \text{ for all but finitely many } \alpha \in J \}$

is dense in X.

2. (20 pts) **Definition:** A simple chain connecting two points a and b of in a topological space X is a collection of open sets U_1, U_2, \ldots, U_n such that $a \in U_1$ only, $b \in U_n$ only, and $U_i \cap U_j \neq \emptyset$ if and only if $|i - j| \leq 1$.

Prove the following theorem.

Theorem: If X is a connected space and \mathcal{U} is an open cover of X, then any two points a and b can be connected by a simple chain consisting of elements of \mathcal{U} .

3. (15 pts) Construct an explicit compactification of (0, 1) for which the functions $f(x) = \sin(1/x)$ and $g(x) = \cos(1/x)$ have continuous extensions.

Note: Your solution must be explicit; do not simply quote the Stone Cech compactification theorem.

- 4. (20 pts) Let X be a Hausdorff space with a countable basis. Show that X is compact if it is sequentially compact.
- 5. (25 pts) Let $\{X_n, d_n\}_{n=1}^{\infty}$ be a countable family of metric spaces, and suppose that $d_n(x_n, y_n) \leq 1$ for all $n \in \mathbb{Z}_+$ and $x_n, y_n \in X_n$.

Write $X = \prod_{n=1}^{\infty} X_n$, and define a $\rho : X \times X \to \mathbb{R}$ by

$$\rho(x,y) = \sup\left\{\frac{d_n(x_n,y_n)}{n} \mid n \in \mathbb{Z}_+\right\}$$

where we write $x = (x_n)_{n=0}^{\infty}$ and similarly for y.

- (a) Show that ρ is a metric.
- (b) Prove that the metric topology \mathcal{T}_{ρ} is coarser than the product topology \mathcal{T} on X.
- (c) Prove that the metric topology \mathcal{T}_{ρ} is finer than the product topology \mathcal{T} on X.