Basic Examination
General Topology
September 2020

Time allowed: $\mathbf{3}$ hours.

1. (15 points) Let X be an infinite set. Let

$$
\tau=\{U \subseteq X: X \backslash U \text { is finite }\} \cup\{\emptyset\}
$$

It is known that τ is a topology.
(i) Show that if X is uncountable then τ is not first countable (i.e. does not satisfy the first axiom of countability).
(ii) Let $x \in X$. Show that a sequence $\left\{x_{n}\right\}_{n=1,2, \ldots}$ converges to x if and only if for each $n \in \mathbb{N}$ either $x_{n}=x$ or there exists $n_{0} \in \mathbb{N}$ such that for all $m>n_{0} x_{m} \neq x_{n}$. (In other words no element except x can appear infinitely many times in the sequence.)
2. (25 points) We define a topology τ on \mathbb{R}^{2} as follows: subset $U \subset \mathbb{R}^{2}$ beelongs to τ if at every point $x \in U, U$ contains an open line segment through x in every direction, that is for every $v \in S^{1}$ there exists $\varepsilon>0$ such that for every $s \in(-\varepsilon, \varepsilon), \quad x+s v \in U$.
(i) Prove that τ is a topology. What is the relation to the standard topology (weaker, stronger, neither)? What is the induced topology on any straight line of \mathbb{R}^{2} ? What is the induced topology on a circle?
(ii) Prove that $\left(\mathbb{R}^{2}, \tau\right)$ is separable and Hausdorff.
(iii) Prove that there exists closed set $E \subset \mathbb{R}^{2}$ which is equipotent to \mathbb{R} and is such that the induced topology is discrete. Prove that $\left(\mathbb{R}^{2}, \tau\right)$ is not normal.
3. (15 points) Let $f: X \rightarrow Y$ be a continuous and closed mapping. Assume that Y is compact and that for all $y \in Y, f^{-1}(\{y\})$ is compact. Show that X is compact.
4. (25 points) Let $X=C([a, b], \mathbb{R})$ for some $a<b$.
(i) Show that for $p>0, d_{p}: X \times X \rightarrow \mathbb{R}$ defined by

$$
d_{p}(f, g)=\max _{t \in[a, b]}|f(t)-g(t)| e^{-p t}
$$

is a metric on X.
(ii) Show that for any $p>0$ the metric d_{p} generates the same topology on X as the standard metric on X :

$$
d(f, g)=\max _{t \in[a, b]}|f(t)-g(t)|
$$

(iii) Let $h \in X$ and $K \in C([a, b] \times[a, b], \mathbb{R})$. Show that there exists a unique $f \in X$ which satisfies the equation

$$
f(t)=h(t)+\int_{a}^{t} K(t, s) f(s) d s \quad \text { for all } t \in[a, b] .
$$

Hint: Use Banach contraction principle in $\left(X, d_{p}\right)$ for appropriately chosen $p>0$.
5. (20 points) Consider the metric space $X=C([0,1], \mathbb{R})$ with the sup metric:

$$
d_{\infty}(f, g)=\max _{x \in[0,1]}|f(x)-g(x)| .
$$

For every $n \in \mathbb{N}$ let

$$
\begin{aligned}
& X_{n}:=\{f \in X: \text { there is } x \in[0,1] \text { such that } \\
& |f(x)-f(y)| \leq n|x-y| \text { for all } y \in[0,1]\} .
\end{aligned}
$$

(i) Fix $n \in \mathbb{N}$ and prove that each $f \in X$ can be approximated by a zigzag (piecewise linear) function $g \in X$ with sufficiently large slopes so that it does not belong to X_{n} and such that $d_{\infty}(f, g)$ is arbitrarily small.
(ii) Fix $n \in \mathbb{N}$ and prove that every open set $U \subset X$ contains an open set that does not intersect X_{n}.
(iii) Prove that there exists a dense G_{δ} set in X that consists of nowhere differentiable functions. A set is a G_{δ} set if it is a countable intersection of open sets.

