DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

BASIC EXAMINATION GENERAL TOPOLOGY SEPTEMBER 2020

Time allowed: 3 hours.

1. (15 points) Let X be an infinite set. Let

$$\tau = \{ U \subseteq X : X \setminus U \text{ is finite} \} \cup \{ \emptyset \}.$$

It is known that τ is a topology.

- (i) Show that if X is uncountable then τ is not first countable (i.e. does not satisfy the first axiom of countability).
- (ii) Let $x \in X$. Show that a sequence $\{x_n\}_{n=1,2,...}$ converges to x if and only if for each $n \in \mathbb{N}$ either $x_n = x$ or there exists $n_0 \in \mathbb{N}$ such that for all $m > n_0 x_m \neq x_n$. (In other words no element except x can appear infinitely many times in the sequence.)
- (25 points) We define a topology τ on ℝ² as follows: subset U ⊂ ℝ² beelongs to τ if at every point x ∈ U, U contains an open line segment through x in every direction, that is for every v ∈ S¹ there exists ε > 0 such that for every s ∈ (-ε, ε), x + sv ∈ U.
 - (i) Prove that τ is a topology. What is the relation to the standard topology (weaker, stronger, neither)? What is the induced topology on any straight line of \mathbb{R}^2 ? What is the induced topology on a circle?
 - (ii) Prove that (\mathbb{R}^2, τ) is separable and Hausdorff.
 - (iii) Prove that there exists closed set $E \subset \mathbb{R}^2$ which is equipotent to \mathbb{R} and is such that the induced topology is discrete. Prove that (\mathbb{R}^2, τ) is not normal.
- 3. (15 points) Let $f : X \to Y$ be a continuous and closed mapping. Assume that Y is compact and that for all $y \in Y$, $f^{-1}(\{y\})$ is compact. Show that X is compact.

- 4. (25 points) Let $X = C([a, b], \mathbb{R})$ for some a < b.
 - (i) Show that for p > 0, $d_p : X \times X \to \mathbb{R}$ defined by

$$d_p(f,g) = \max_{t \in [a,b]} |f(t) - g(t)| e^{-pt}$$

is a metric on X.

(ii) Show that for any p > 0 the metric d_p generates the same topology on X as the standard metric on X:

$$d(f,g) = \max_{t \in [a,b]} |f(t) - g(t)|$$

(iii) Let $h \in X$ and $K \in C([a, b] \times [a, b], \mathbb{R})$. Show that there exists a unique $f \in X$ which satisfies the equation

$$f(t) = h(t) + \int_a^t K(t,s)f(s)ds$$
 for all $t \in [a,b]$.

Hint: Use Banach contraction principle in (X, d_p) for appropriately chosen p > 0.

5. (20 points) Consider the metric space $X = C([0, 1], \mathbb{R})$ with the sup metric:

$$d_{\infty}(f,g) = \max_{x \in [0,1]} |f(x) - g(x)|.$$

For every $n\in\mathbb{N}$ let

 $X_n := \{ f \in X : \text{ there is } x \in [0, 1] \text{ such that} \\ |f(x) - f(y)| \le n |x - y| \text{ for all } y \in [0, 1] \}.$

- (i) Fix n ∈ N and prove that each f ∈ X can be approximated by a zigzag (piecewise linear) function g ∈ X with sufficiently large slopes so that it does not belong to X_n and such that d_∞ (f, g) is arbitrarily small.
- (ii) Fix $n \in \mathbb{N}$ and prove that every open set $U \subset X$ contains an open set that does not intersect X_n .
- (iii) Prove that there exists a dense G_{δ} set in X that consists of nowhere differentiable functions. A set is a G_{δ} set if it is a countable intersection of open sets.