BASIC EXAMINATION: GENERAL TOPOLOGY

Tuesday August 27, 2019, 4:30pm-7:30pm

- 1.
- (i) [8 points] Let (X, τ) be a topological space. Give the definition of:
 - (a) (X, τ) is separable;
 - (b) (X, τ) is normal;
 - (c) (X, τ) is connected;
 - (d) (X, τ) is compact.
- (ii) [8 points] Prove that ℓ^{∞} is not separable.

2.

- (i) [5 points] Given a collection of topological spaces $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in \Lambda}$, give the definition of product topology and box topology.
- (ii) [5 points] State Tikhonov's Theorem.
- (iii) [10 points] Prove that $\prod_{\alpha \in \Lambda} X_{\alpha}$ is a Hausdorff space if and only if each $(X_{\alpha}, \tau_{\alpha})_{\alpha \in \Lambda}$ is a Hausdorff topological space.
- (iv) [8 points] Prove that $[0,1]^{\mathbb{N}}$ with the box topology is not compact.

3. [15 points] Let (X, τ_X) and (Y, τ_Y) be topological spaces, let $A \subset X$ and $B \subset Y$ be compact sets, and let $W \in \tau_{X \times Y}$ be an open set such that $A \times B \subset W$. Prove that there exist open sets $U \in \tau_X, V \in \tau_Y$, such that

$$A \times B \subset U \times V \subset W.$$

4.

- (i) **[5 points]** Give the definition of Baire space.
- (ii) [13 points] State and prove Baire Category Theorem.
- (iii) [8 points] Prove that the vector space of all polynomials in one variable with real coefficients is not a Banach space in any norm.

5.

- (i) [5 points] State Ascoli-Arzelà Theorem.
- (ii) [10 points] Let $\{f_n\} \subset C^2((0,1))$ be a sequence of functions such that

$$\sup_{n \in \mathbb{N}} \{ |f_n(0)| + |f'_n(0)| \} =: M < \infty,$$

and there exists $\alpha \in (1,2)$ such that for all $n \in \mathbb{N}$ and $x \in (0,1)$

$$|f''(x)| \le \frac{1}{(1-x)^{\alpha}}$$

Prove that $\{f_n\}$ admits a subsequence that converges to a continuous function uniformly on compact sets.