DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

Basic Examination General Topology August 2016

Time allowed: 180 minutes. All problems carry the same weight.

- 1. (i) Show that the product of any (nonempty) family of nonempty Hausdorff topological spaces is Hausdorff.
 - (ii) Show that the product of any (nonempty) family of nonempty completely regular topological spaces is completely regular.
- 2. (i) Let (X, d) be a metric space. Show that $E \subset X$ is disconnected if and only if there exist U_1 and U_2 open in X such that $E \subset U_1 \cup U_2$, $U_1 \cap E \neq \emptyset$, and $U_2 \cap E \neq \emptyset$ and $U_1 \cap U_2 = \emptyset$.
 - (ii) Construct a topological space X and a disconnected subset E for which the above is not true.
- 3. Let $f: X \to Y$ be a continuous and closed mapping. Assume that Y is compact and that for all $y \in Y$, $f^{-1}(\{y\})$ is compact. Show that X is compact.

Hint: It may be useful to show that for any $y \in Y$ and any open set $U \subseteq X$ containing $f^{-1}(y)$ there exists W_y an open neighborhood of y such that $f^{-1}(W_y) \subseteq U$.

4. Let (X, τ) be a topological space and let $f: X \to \mathbb{R}$. The *epigraph* of f is the set

 $epi f := \{(x, t) \in X \times \mathbb{R} : f(x) \le t\}.$

Show that f is lower-semicontinuous (LSC) if and only if epi f is closed.

Recall that f is LSC if for all $a \in \mathbb{R}$, $f^{-1}((a, \infty))$ is open.

- 5. Let $\mathcal{M} = \{f : [0,1] \to [0,1] : f \text{ is nondecreasing }\}$. (Note that functions in \mathcal{M} are not assumed to be continuous.)
 - (i) Show that every sequence in $\{f_n\}_n$ in \mathcal{M} has a subsequence that converges pointwise to some function $f \in \mathcal{M}$.
 - (ii) Show that if f above is continuous then the convergence of the subsequence is uniform.