DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

Basic Examination General Topology January 2016

Time allowed: 120 minutes.

Do four of the five problems. Indicate on the first page which problems you have chosen to be graded. All problems carry the same weight.

- 1. Let A be a countable subset of \mathbb{R}^2 . Show that $\mathbb{R}^2 \setminus A$ is pathwise connected.
- 2. Let $f: X \to Y$ be a continuous, closed and surjective. Assume that for all $y \in Y$, $f^{-1}(\{y\})$ is compact. Show that
 - (i) If X is Hausdorff, so is Y.
 - (ii) If X is locally compact, so is Y.
- 3. Let (X, τ_X) and (Y, τ_Y) be topological spaces and let $f : X \to Y$ be a mapping. Let $\Gamma = \{(x, y) \in X \times Y : y = f(x)\}$ be the graph of f.
 - (i) Show that if Y is Hausdorff and f is continuous then Γ is closed in $(X \times Y, \tau_X \times \tau_Y)$.
 - (ii) Assume X = Y. Show that if X is not Hausdorff then for the identity function, f(x) = x for all $x \in X$, the graph is not closed.
- 4. Let (X, τ) be a $T_{3\frac{1}{2}}$ space. Show that X is homeomorphic to a subset of $Y = [0, 1]^I$ for some nonempty set I. The topology on Y is the product topology where on [0, 1] we consider the standard topology.
- 5. Let $X = \{f \in C([0,1], \mathbb{R}) : f(0) = f(1) = 0\}$. Let $\mathcal{B} \subset X$ be the set of functions on [0,1] of the form $x \mapsto x^n(1-x)$ where $n \ge 1$. Let $\mathcal{A} = \operatorname{span} \mathcal{B}$ where by span we mean the set of all linear combinations of functions in \mathcal{B} . Show that \mathcal{A} is dense in X.