Department of Mathematical Sciences Basic Exam in Functional Analysis August 2022

Instructions:

- Answer each of the 5 questions.
- You may assume all Banach spaces are over the real numbers.
- If E is a Banach space, the dual is denoted by E', and second dual by E''.
- The ball of radius r in a metric space E centered at $x \in E$ is denoted by B(x,r) or $B_E(x,r)$ if multiple spaces are involved. The unit ball is denoted by $B_E \equiv B_E(0,1)$.
- $\sigma(E, E')$ denotes the weak topology on E, and $\sigma(E', E)$ the weak star topology on E'.
- $\mathcal{L}(E, F)$ denotes the space of continuous linear operators from E to F.
- 1. Let E be a Banach space.
 - (a) (10 pts) Let $\{f_i\}_{i=1}^k \subset E'$ and $\{\gamma_i\}_{i=1}^k \subset \mathbb{R}$ and suppose that

$$\left|\sum_{i=1}^{k} \beta_{i} \gamma_{i}\right| \leq \left\|\sum_{i=1}^{k} \beta_{i} f_{i}\right\|_{E'}, \quad \text{for all} \quad \{\beta_{i}\}_{i=1}^{k} \subset \mathbb{R}.$$

Prove that for all $\epsilon > 0$ there exists $x_{\epsilon} \in E$ such that $||x_{\epsilon}||_{E} \leq 1$ and

$$|f_i(x_{\epsilon}) - \gamma_i| \le \epsilon, \qquad 1 \le i \le k.$$

- (b) (15 pts) Let E be a Banach space and $J: E \to E''$ the canonical embedding. Prove that $J(B_E)$ is dense in $(B_{E''}, \sigma(E'', E'))$.
- 2. (15 pts) Let E be a real Banach space and $B \subset E$ be a *barrel* containing the origin; that is,
 - $0 \in B$ and B is closed and convex.
 - (Balanced) If $x \in B$ then $\lambda x \in B$ for all $|\lambda| \leq 1$.
 - (Absorbing) For each $x \in E$ there exists $\lambda \in \mathbb{R}$ such that $\lambda x \in B$.

Prove that there exists r > 0 such that $B(0, r) \subset B$.

3. (20 pts) Let E be a Banach space and $T: E \to E'$ be linear and satisfy

$$(T(x), x) \ge 0 \qquad x \in E.$$

Prove that T is continuous.

4. (20 pts) Let E and F be two Banach spaces and $T \in \mathcal{L}(E, F)$ be surjective and have finite dimensional null space $N(T) \subset E$.

If |.| is a norm on E satisfying $|x| \leq M ||x||_E$, prove that there exists a constant C > 0 such that

$$||x||_E \le C(||T(x)||_F + |x|), \qquad x \in E.$$

5. Let *H* be a Hilbert space and $\{u_n\}_{n=1}^{\infty} \subset H$ converge weakly to zero; $u_n \to 0$. Inductively construct a sub-sequence $\{u_{n_k}\}_{k=1}^{\infty}$ such that

$$|(u_{n_j}, u_{n_k})| \le 1/k$$
, for all $k \ge 2$, and $j = 1, 2, \dots, k-1$.

- (a) (10 pts) Let $\sigma_p = (1/p) \sum_{j=1}^p u_{n_j}$. Show that σ_p converges strongly to a limit as $p \to \infty$.
- (b) (10 pts) Let $\{u_n\}_{n=1}^{\infty}$ be a bounded sequence in H. Prove that there exists a sub-sequence $\{u_{n_j}\}_{j=1}^{\infty}$ such that $\sigma_p = (1/p) \sum_{j=1}^p u_{n_j}$ converges strongly to a limit as $p \to \infty$.