Basic Examination: Functional Analysis February 2021

- This test is closed book: No books, notes, or access to any other relevant materials (including Internet consultation) are permitted.
- You have 3 hours. The exam has a total of 6 questions and 120 points (20 each).
- You may use without proof standard results from the syllabus (not from homework) which are independent of the question asked, unless explicitly instructed otherwise. You must, however, clearly state the result you are using.

Below, $\ell^{p}(1 \leq p<\infty)$ is the Banach space of complex-valued sequences $x=\left(x_{k}\right)_{k \in \mathbb{N}}$ such that the norm

$$
\|x\|_{p}=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p} \quad \text { is finite. }
$$

1. Suppose $1<p<\infty$. Let S be the vector space of sequences $x \in \ell^{1} \cap \ell^{p}$ such that $\sum_{k=1}^{\infty} x_{k}=0$. Prove that S is dense in ℓ^{p}.
2. Let H be a Hilbert space and let $T: H \rightarrow H$ be a bounded linear map. Prove that if both T and T^{*} are bounded below, then T is bijective with bounded inverse. (T bounded below means that for some $c>0,\|T x\| \geq c\|x\|$ for all $x \in H$.)
3. Let $\left(a_{k}\right)_{k=1}^{\infty}$ be a decreasing sequence of positive reals and let $R=\lim _{k \rightarrow \infty} a_{k}$. Define $T: \ell^{2} \rightarrow \ell^{2}$ by $T x=\left(0, a_{1} x_{1}, a_{2} x_{2}, \ldots\right)$, i.e.,

$$
(T x)_{1}=0, \quad \text { and } \quad(T x)_{k+1}=a_{k} x_{k}, \quad k=1,2, \ldots
$$

(a) Find all eigenvalues $\lambda \in \mathbb{C}$ of T satisfying $|\lambda| \neq R$.
(b) Find all eigenvalues $\lambda \in \mathbb{C}$ of T^{*} satisfying $|\lambda| \neq R$.
(c) Show that the spectral radius $r(T)=\max \{|\lambda|: \lambda \in \sigma(T)\}=R$.
4. Let X be a separable Banach space and let $C \subset X^{*}$ be a closed convex subset of the dual space. Prove that for any $\ell \in X^{*}$ there is a point $z \in C$ closest to ℓ, in the sense that

$$
\|z-\ell\|_{X^{*}} \leq\|y-\ell\|_{X^{*}} \quad \text { for all } y \in C
$$

5. Let $\left(x_{n}\right)$ be a sequence in an arbitrary Banach space X and assume $x_{n} \rightharpoonup x$ as $n \rightarrow \infty$. Prove that there exists a sequence $\left(y_{n}\right)$ with $y_{n} \in \operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$ such that $\left\|y_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$.
6. If $T: X \rightarrow Y$ is a map between Banach spaces, let us say T preserves weak convergence if for every weakly convergence sequence $x_{n} \rightharpoonup x$ in X, the sequence $T x_{n} \rightharpoonup T x$ in Y. Prove that for any linear map $T: X \rightarrow Y, T$ is continuous if and only if T preserves weak convergence.
