- This test is **closed book**: no notes or other aids are permitted.
- You have 3 hours. The exam has a total of 5 questions and 100 points (20 each).

• You may use without proof *standard* results from the syllabus which are independent of the question asked, unless explicitly instructed otherwise. You must, however, **clearly** state the result you are using.

1. Let X be the Banach space of all functions $f : \mathbb{R} \to \mathbb{R}$ that are continuous and bounded, with norm $||f|| = \sup_{x \in \mathbb{R}} |f(x)|$. For each $t \in \mathbb{R}$ define the operator $U(t) \in \mathcal{L}(X)$ (the space of bounded linear operators on X) by

$$(U(t)f)(x) = f(x+t).$$

- (a) Prove that X is not separable.
- (b) Is the map $t \mapsto U(t)$ continuous from \mathbb{R} to $\mathcal{L}(X)$? Prove or disprove.
- (c) Let Y be the set of $f \in X$ such that the strong limit

$$\lim_{t \to 0} \frac{U(t)f - f}{t}$$

exists in X. Show Y is not dense in X.

2. Let S be a closed convex set in a Hilbert space H. For each $x \in H$ let $g(x) \in S$ be the unique element in S such that

$$||x - g(x)|| = \inf_{z \in S} ||x - z||.$$

Show that y = g(x) if and only if $y \in S$ and $(x - y, z - y) \leq 0$ for all $z \in S$.

3. In the Hilbert space $H = L^2([0, 1])$, define the operator T by

$$(Tf)(x) = \int_0^1 \min(x, y) f(y) \, dy$$

(i) Show that T is compact, and (ii) find its spectrum.

4. Let X be a real Banach space. Let $p: X \to [0, \infty)$ be such that $p(x+y) \le p(x) + p(y)$ and p(tx) = tp(x), for all $x, y \in X$ and $t \ge 0$. Prove that the set $B = \{x \in X : p(x) < 1\}$ is convex. Is it necessarily the case that B contains a neighborhood of 0? Prove your answer.

5. Let X and Y be real Banach spaces with duals X^* and Y^* respectively, and let $\mathcal{L}(X, Y)$ denote the space of bounded linear operators $T: X \to Y$.

- (a) Give explicitly a neighborhood base at 0 for $\sigma(X^*, X)$, the weak-* topology of X^* .
- (b) Given any $T \in \mathcal{L}(X, Y)$, prove that its adjoint T' is a continuous map from the topological vector space Y^* equipped with the topology $\sigma(Y^*, Y)$, to X^* equipped with the topology $\sigma(X^*, X)$.
- (c) Show that if f is a linear functional on X^* which is weak-* continuous, then there is some $x \in X$ such that $f(\ell) = \ell(x)$ for all $\ell \in X^*$. (Hint: show codim ker $f < \infty$.)