2020 January Basic Exam of Functional Analysis

January 16th 4:30pm-7:30pm
Closed book and closed notes.
(1) (15 points) Given $\alpha \in(0,1)$, consider the space $C^{\alpha}([0,1])$ consisting of all functions with the norm

$$
\|f\|_{\alpha}=\sup _{x \in[0,1]}|f(x)|+\sup _{x, y \in[0,1], x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}
$$

(i) show it is a Banach space; (ii) show that any bounded sequence $\left\{f_{n}\right\}$ in $C^{\alpha}([0,1])$ has a subsequence $\left\{f_{n_{j}}\right\}$ that converges uniformly in $[0,1]$.
(2) (15 points) Let H be a Hilbert space and $M \subset H$ be a subspace. Let $f: H \rightarrow \mathbb{C}$ be a linear functional on M with bound $C=\sup _{x \in M,\|x\|=1}|f(x)|$. Prove that there is a unique extension of f to a continuous linear functional on H with the same bound.
(3) (20 points) Let $T: H \rightarrow H$ be a self-adjoint bounded operator on the Hilbert space H, and assume T is bounded from below in the sense that $\|T x\| \geq c\|x\|$ for some $c>0$ and all $x \in H$. Show that for any $y \in H$, there is a unique solution to $T x=y$.
(4) (20 points) Let X be a Banach space, Y and Z are closed subspaces of X that complement each other: $X=Y \bigoplus Z$, in the sense that every x in X can be decomposed uniquely $x=y+z$ with $y \in Y, z \in Z$. Denote $y=P_{Y} x$ and $z=P_{Z} x$. Show that (i) P_{Y} and P_{Z} are linear maps; (ii) $P_{Y}^{2}=P_{Y}, P_{Z}^{2}=P_{Z}, P_{Y} P_{Z}=0$; (iii) P_{Y} and P_{Z} are continuous.
(5) (15 points) Consider the operator $A: \ell_{2} \rightarrow \ell_{2}$ defined as $A\left(x_{1}, x_{2}, \ldots\right)=\left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, \ldots\right)$, where $\lambda_{n} \in \mathbb{C}$. Show that A is compact iff $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(6) (15 points) Consider the space $\ell_{2}(\mathbb{Z})$, i.e., the set of $\left(\ldots, x_{-1}, x_{0}, x_{1}, \ldots\right)$ such that $\sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2}<$ ∞. Define the discrete Laplacian operator on $\ell_{2}(\mathbb{Z})$ by $(\Delta x)_{k}=x_{k-1}+x_{k+1}-2 x_{k}$. Find and classify the spectrum of Δ.

