2019 Basic Exam: Functional Analysis

Sept 5th 4:30pm-7:30pm

Closed book and closed notes.

- (1) Let H be a Hilbert space. Assuming $\{T_n\}$ is a sequence of bounded linear operators from H to H such that for all $x, y \in H$ we have $\langle T_n x, y \rangle$ converges as $n \to \infty$. Show that there exists a unique bounded linear operator T such that $\langle T_n x, y \rangle \to \langle T x, y \rangle$.
- (2) Let X, Y be Banach spaces, $T: X \to Y$ is a bounded linear map. Show that the following are equivalent:
 - (i) there exists c > 0 such that $||x||_X \le c ||Tx||_Y$ for all $x \in X$;
 - (ii) T has a closed range and the only solution to Tx = 0 is x = 0.
- (3) Define $T: \ell_1 \to \ell_1$ by $T(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$, find and classify the spectrum of T.
- (4) Consider the operator K defined on $L^{2}[0, 1]$ as

$$Kf(x) = \int_{x}^{1} \left(\int_{0}^{y} f(z)dz \right) dy$$

(i) Show that K is self-adjoint; (ii) show that K is compact; (iii) find the spectrum of K.

- (5) Let H be a Hilbert space. Consider a bounded linear operator $K : H \to H$, show that K is compact if and only if K maps weakly convergent sequences into strongly convergent sequences.
- (6) (i) State the Hahn-Banach theorem; (ii) show $\ell_{\infty} = \ell_1^*$; (iii) use Hahn-Banach theorem to show that ℓ_1 is not reflexive.